
 
 

 
 

Project no. 502572 
 

FISBOAT 
 

FISHERIES INDEPENDENT SURVEY-BASED OPERATIONAL ASSESSMENT TOOLS 
 
 
Instrument : STREP 
 
Thematic Priority : 8.1 
 
 
 

FINAL ACTIVITY REPORT  
 
 
 
 
Period covered: from    01 March 2004    to    30 June 2007  
 
 
Start date of project: 01 March 2004     Duration: 40 months 
 
 
Project coordinator name : Pierre Petitgas 
Project coordinator organisation name : IFREMER  
 
 
Revision : draft 1 



 1

FISBOAT final activity report 
 
 
 
 
 
 
Publishable Executive Summary …………………………………………………. 2 
Overview of Project Results ………………………………………………………. 3 
Plan for the Use and Dissemination of Knowledge …………………………… 6 
Document 1: Indicator-Based Assessment – Methods ………………………. 11 
Document 2: Indicator-Based Assessment – Application of methods ……. 148 
Document 3: Survey data only Assessment models …………………………. 181 
Document 4: Simulation Evaluation with FLR - Methods ……………………. 211 
Document 5: Simualtion Evaluation with FLR – applications ………………. 228 
Document 6: Simulation Evaluation with ALADYM – Methods ……………... 244 
Document 7: Simulation Evaluation with ALADYM – Applications ………… 265 
Document 8: Comprehensive Assessments …………………………………… 272 
 
 
 
Individual case study reports are annexed to this report in a separate volume 
 
 
 



 2

Publishable executive summary 
 
The Fisboat project was aimed at developping fish stock assessment tools that are based on fishery 
independent research survey data only and evaluate how these tools perform in providing diagnostics 
and advice in different management contexts. The survey-based assessment included indices of 
demography, total mortality, spatial occupation, biological traits leading to comprehensive stock 
diagnostics. The project involved several disciplines: population biology, survey methods, stock 
assessment, management. The project case studies spanned a diversity of European stocks and 
regional seas : Barents sea cod, North Sea cod and herring, Baltic sea cod, Bay of Biscay hake and 
anchovy, Thyrrenean sea red mullet, Ionian sea hake, Aegean sea hake.  
 
The project has developed fishery-independent survey-based methods and tools to assess on fish 
stocks. The project has developed the capacity to calculate fish populations’ indices of abundance, 
vital traits and spatial distribution, monitor changes in their time series and formulate comprehensive 
indicator-based diagnostics. The successful application of methods and tools to all project case studies 
proved the feasability of the procedures and the operationality of the tools in providing fishery-
independent survey-based assessment and advice. Methods and applications were compiled as 
pubished manuals (ICES CM 2007/O:27 and O:16). The Fisboat indicator-based procedures suggest a 
way to achieve an operational and comprehensive monitoring system of fish stocks with an ecosystem 
perspective. 
 
The project has also developed survey-data-only assessment models which span a diverse range of 
data requirements, from aggregated biomass to length-structured and age-structured models. These 
models allow for the estimation of abundance, catchability and mortality indices. Models 
preformances were bench-mark tested using simulated test data sets with known characteristics. A 
manual of methods compiling models documentations and performances was produced (ICES CM 
2007/O:04).  
 
Because survey-based assessment procedures used indices and indicators, simulation evaluating their 
performance was a natural complement. The project developed under the FLR framework a simulation 
evaluation loop comprising an age-structured population model, a survey-like observation model, a 
harvest model as well as graphical and statistical outputs summarising simulation results. The tools 
and their case study applications were documented in specific manuals. The simulation experiments 
that were run on the case studies allowed to investiage key issues including which are the harvest rules 
that are robust to uncertainties in the population dynamics as well as in the precision of survey indices. 
The FLR simulation plateform was appropriate for the current TAC-based management context within 
ICES waters. Another simulation plateform (ALADYM) was also developed. It used a more 
biologically complex population model, which was useful in other management situations, e.g. 
Mediterranean waters, where fishery landings are not controled and where so called ‘technical 
measures’ are envisaged as management options. The ALADYM simulation plateform allowed to 
investigate combinations of fish stock biological traits with management measures on the long-term 
sustainability of the population. Methods, tools and results of applications to case studies were 
reported in documents produced as manuals.  
 
In all, the project developed operational tools and applied these on case study applications with 
success, thus demonstrating the possibility to monitor fish stocks using fishery-independent survey-
based procedures and provide advice in different management contexts. The comprehensive indicator-
based diagnostics combined with simulation evaluation tools had the potential to increase the 
reliability of the diagnostics and advices. Ways on how to create comprehensive assessments have 
been reported in a document cross-cutting all project aspects. All project products are available on the 
Fisboat website at http://www.ifremer.fr/drvecohal/fisboat/. 
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Overview of project results 
 
Conventional fish stock assessment methods are dependent on commercial catch data. But there are 
more and more situations in which alternative assessment methods are needed. For instance, for stocks 
that are collapsed, the fishery might be closed thus fishery catches are unavailable or unreliable. Also, 
misreporting and unaccounted discards generate difficulties to convert reliably landings to effective 
catches at sea. Last, advice is asked for an increasing number of stocks, and for many of them 
historical series of fishery catches disaggregated by age do not exist, making conventional assessments 
impossible. In that context, research survey-based measurements made at sea in known conditions 
represent an invaluable set of fishery-independent data on which to base an assessment. What type of 
assessment do these data lead to and how could such assessment be useful alongside existing 
methods?  
 
To investigate these questions, the FISBOAT project involved several disciplines: population biology, 
survey methods, stock assessment, management. The project case studies spanned a diversity of 
European stocks and management contexts: cod in the Barents sea, the North Sea, the Baltic sea, hake 
in the Bay of Biscay, the Ionian sea, the Aegean sea, herring in the North Sea, anchovy in the Bay of 
Biscay and red mullet in the Tyrrhenian sea. 
 
The FISBOAT project developed methods and tools (software and documentation) for assessing the 
status of fish stocks as well as provide advice on management strategies, using only fishery-
independent information from research surveys. Three categories of methods were developed: (i) 
assessment models, (ii) monitoring procedures based on indicators of stock attributes, (iii) simulation 
evaluation tools. The two first category of methods are essentially diagnostic methods that provided 
relative diagnostics. Simulation tools allowed to investigate the effect of management options and 
were complementary to the diagnostic tools. The developed procedures were applied on case study 
applications with success, which demonstrated the possibility to monitor fish stocks using fishery-
independent survey-based procedures and provide advice in different management contexts. The 
methods and their application tools were documented and developed as scripts in language R.  
 
The present final activity report compiles synthesis documents which describe the methodological 
developments achieved, their applications to case study stocks and how a comprehensive approach to 
stock assessment and advice could be set up. Individual case study reports on the application of the 
methods are annexed to this report in a separate volume. Most of the Fisboat documents have been 
disseminated at ICES ASC or expert groups and at GFCM. The present report has been concieved to 
serve as a manual of methods and applications to support the development of an alternative approach 
to fish stock assessment using survey data. The Plan on the Use and Dissemination of Knowledge 
documents that purpose. Further, all project products are available on the Fisboat website at 
http://www.ifremer.fr/drvecohal/fisboat/.  
 
Indicator-based assessments are treated in Documents 1 and 2. Survey-based assessment models are 
the subject of document 3. Documents 4 and 5 are concerned with the FLR simulation evaluation 
plateform and its applications. Documents 6 and 7 treat of the ALADYM simulation tools and their 
applications. Finally Document 8 makes suggestions for a comprehensive assessment approach.  
 
Document 1 compiles the methods for an indicator-based assessment. First, methods were developed 
to calculate survey derived indicators of biological and spatial attributes of fish stocks. An extensive 
list of indicators was considered for monitoring abundance, vital traits and spatial distributions. The 
indicators were documented using a standardized format. Second, a variety of methods were 
considered to statistically evidence trend or change in the indicator time series. These methods 
consituted a monitoring approach to fish stock assessment with set risks of detection and false alarm. 
The assessment used the wide range of biological information and not just the abundance at age. In 
addition to using a collection of univariate indicator time series, methods to construct multivariate 
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indicators were considered and documented. Multivariate methods also served to select those 
indicators which carried the signal of change in the time series. Last, the indicator-based assessment 
was achieved by combining the results of the analyses of the indicator time series in specific 
diagnostic tables. The construction and interpretation of these tables was also documented.  
 
Document 2 compiles the application of the indicator methods to all the project case sudies. Document 
2 is based on individual case study reports that reported applications with a standard template. The 
template is concieved to document how changes in indicators time series are identified and how 
diagnostics are achieved. It could serve as an example for delivering an indicator-based assessment. 
Results of applications show that the performance of the different methods varies depending on the 
nature of the variability along the time series. Short time series with high variability are statistically 
less easily interpretable. Indicators of spatial distributions often alert on stock status as well as the 
index of age at maturity. The wide range of biological and spatial indicators considered may provide 
advance warning in comparison to using abundance indices alone. The indicator-based assessment 
compared with conventional assessments along the past series, meaning commercial catch data are not 
necessary to assess fish stock status. The applications were performed using the R script tools 
developed. The application to all project case study stocks demonstrated the potential of the tools for 
delivering indicator-based assessments in operational mode in a wide range of situations. Procedures 
could now be applied to provide indicator-based assessments to expert groups for any stock that is 
monitored with research surveys.  
 
Document 3 documents and tests survey-based assessment models that used survey indices of 
abundance only. A variety of models were considered that had different input data requirements (e.g., 
aggregated biomasse, abundance at length, abundance at age) and had different assumptions for the 
mortality across ages and years. The models were tested for their ability to capture changes in 
abundance time series, in different scenarios of stock (depletion/recovery) and survey performance 
(selectivity, catchability, noise in indices). The tests used published NRC simulated data with known 
properties. The survey-based assessment models behaved as smoothers for noisy indices and were able 
to reliably capture the major signal in biomass and recruitment, although they smoothed out transient 
changes. Based on survey data only, models could not provide absolute estimates of stock size but 
tests indicated that they would provide useful indications on trends, to which managers might wish to 
react.  
 
Document 4 describes the models and tools of the FLR simulation evaluation loop, with reference to 
the FLR website when appropriate. The framework implements the following models that interact in a 
dynamic simulation loop: an operating model that provides the underlying stock dynamics, an 
observation model that provides (based on the operating model outputs) survey indices with specified 
error and bias, a harvest control rule model (HCR) that provides the management options and substract 
from the population fishery catches. Also documented are graphical display tools that enable visual 
analysis of the simulation outputs. The range of HCRs that can be considered depend to some extent 
on the biological complexity in the operating model. Here the operating model was a classical VPA-
like population model (age-based with stock recruitment relationship) with a yearly time step, which 
was appropriate for the type of data used in ICES assessment working groups. The HCRs considered 
were rules for defining TAC based on survey abundance indices or on Z and were appropriate for the 
current ICES management context.  
 
Document 5 compiles the application of the FLR simulation evaluation tools on case study stocks 
(North Sea herring,North Sea cod, North East Arctic cod, Bay of Biscay anchovy). Management plans 
for these stocks are documented. The capability of HCRs to management the stock using survey data 
only is tested different uncertainties in the survey indices, in the stock dynamics or misreporting. The 
performance of different HCRs are compared (Z-based, TAC-based, TAC-based with addition 
triggering indicator alarm). For these purposes a list of performance statistics is defined. Results show 
that it is possible to obtain well performing HCRs based on survey-derived information only. 
Commercial catch data are therefore not necessary to provide management advice. HCRs need to be 
more conservative for controlling the system when its variability is higher, regardless of whether the 
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variability comes from external factors (e.g., misreporting, noise in survey data) or the stock itself 
(recruitment). Rather than maximise the catch based on modelling assumptions, results show that it is 
better and possible to design robust HCRs that will perform well given the many uncertainties.   
 
Document 6 is a suite of papers describing the Aladym simulation models and tools. Aladym is an 
age-based population operating model that considers age to length conversion and also formulates 
length-dependent natural mortality, fecundity and gear selectivity. The model time step is the month 
allowing, which allows to consider progressive length-dependent recruitment to the population during 
the year. The model is appropriate for the management context currently in place in the Mediterranean. 
With the Aladym model, the HCRs that can be considered range from TAC to mesh size regulation 
and seasonal closures. A stochastic version of Aladym was developed to account for uncertainty in the 
biological parameters, which are then considered as random variables. Metrics were defined to 
characterise stock status and fishing pressure. Last, survey-derived information that is input to the 
Aladym model is documented.  
 
Document 7 compiles the application of the simulation evaluation Aladym tools on case study stocks 
(red mullet in the Tyrrhenian sea, hake in the Aegean sea, hake in the Bay of Biscay, cod in the Baltic 
sea). The long-term evolution of these stocks was simulated using model parameter values estimated 
from survey data. Simulations were performed for different complementary purposes. Correlation 
between indicators of fishing pressure and biological parameters was analysed in order to test whether 
they could be used to alert on a degrading stock status. These analyses are complementary to the 
indicator-based assessment (indicator testing), and in particular when survey time series is short. 
Simulation experiments also allowed to estimate reference values for Z that were compatible with the 
long-term stock viability given uncertainties in recruitment and biological parameters. Last, complex 
multi-annual management plans were considered in which seasonal closures added to reduced TACs. 
Such plans performed better than total fishing ban during too few years and were also considered more 
realistic.  
 
Document 8 summarises and puts into perspective all project developments and results obtained on the 
case study stocks. It suggests a protocole for implementing a comprehensive assessment procedure 
based on survey data. The different steps of the protocole are to agree on management objectives, 
select indicators and reference values, select methods to detect changes in time series and how to 
elaborate the assessment based on their combination. The indicators under consideration should not 
only concern the biology of the stock but also fishing pressure and survey quality. The survey-based 
assessment being based on statistically identified changes in indicator time series, it can only be 
relative to a reference stock status. But there is no reason why management decisions might not be 
based on relative assessments. The last step of the protocole is therefore to agree on management 
response to good and bad assessment results. The document further describes how indicator-based 
asssessment and simulation evaluation are complementary, for testing indicators, estimating reference 
values as well as management responses to indicator-based assessments. It also suggests how to use 
comprehensive survey-based assessments along side conventional assessments and the increased 
reliability gained by using a wider base of knowledge for assessing fish stocks. Last, the consideration 
of a wide range of indicators opens the way to assessing fish stocks with an ecosystem perspective.  
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PLAN FOR USING AND DISSEMINATING KNOWLEDGE 
 
 
Overview table  
 
Date Type Type of audience Countries 

addressed 
Size of 
audience 

Partner responsible 
/ involved 

April 2004 Conference GFCM-FAO European + 
Mediterranean 

60 Sibm 

June 2004 Fisboat website 
http://www.ifremer.fr/
drvecohal/fisboat/ 
 

Public worldwide worldwide Ifremer 

October 2004 Fisboat Leaflet Public and Research Europe ≈ 700 Ifremer 
 

February 2005 Conference Fisherman 
Associations 

Italy 20 Sibm 
1 paper 

May 2005 Conference Fisherman 
Associations 

Italy 15 Sibm 
1 paper 

May 2005 Conference Marine Biology 
Scientists 

Italy 40 Sibm 
1 paper 

Sept. 2005 Conference 
ICES ASC 

Research 
 

International ≈ 700 Armines, Ifremer 
2 papers 

Jan. 2006 
 

Working group 
Association Française 
d’Halieumétrie 

Research 
 

France 20 Armines , Ifremer 
 
1 paper 

June 2006 Conference 
ICES Symposium 

Research 
 

International ≈ 500 Imperial College, 
Ifremer 
2 papers 

Sept 2006 
 

Conference 
ICES ASC 

Research 
 

International ≈ 700 Armines, Ifremer, 
I.Coll. 
3 papers 

Nov. 2006 Working group 
ICES WGACEGG 

Research International ≈ 20 Ifremer, Azti 
3 papers 

March 2007 Working group 
GFCM stock 
assessment 

Research Mediterranean 
countries 

 Sibm 
1 paper 

March 2007 Working group 
ICES WGMGM 

Research International  Cefas 
1 paper 

March 2007 Working group 
ICES HAWG 

Research International  Frs 
1 paper 

June 2007 Conference 
Association Française 
d’Halieumétrie 

Research France ≈ 100 Ifremer 
1 presentation 

July 2007 Press European Parlement European 
countries 

 Ifremer interviewed 
1 article 

Sept 2007 
 

Conference 
ICES ASC  

Research 
 

International ≈ 700 Armines, Ifremer, 
Cefas, Sibm 
5 papers 

2007 Publications 
 

Research 
 

International  Cefas, Ifremer, 
Armines 
6 articles 

2008 Publication of a 
special journal volume 
expected  

Research International  Ifremer, Cefas, all 
partners 
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Research articles 
 
Cotter, J., Mesnil, B. and Piet, G. 2007. Estimating stock parameters using year class curves. ICES Journal of 

Marine Science, 64: 234-247. 
Kell, L., Mosqueira, I., Grosjean, P., Fromentin, J.-M., Garcia, D., Hillary, R., Jardim, E., Mardle, S., Pastoors, 

M., Poos, J. and Scott, F. 2007. FLR : an open-source framework for the evaluation and development of 
management strategies. ICES Journal of Marine Science, 64: 640-646. 

Poulard, J.-C. and Trenkel, V. (accepted). Do survey design and wind conditions influence survey indices ? 
Canadian Journal of Fisheries and Aquatic Sciences 

Trenkel, V., Rochet, M.-J. and Mesnil, B. 2007. From model-based prescriptive advice to indicator-based 
interactive advice. ICES Journal of Marine Science, 64: 768-774. 

Trenkel, V. (in revision). A biomass random effects model (BREM) for fish stock assessment and management 
with application to Bay of Biscay anchovy. Canadian Journal of Fisheries and Aquatic Sciences. 

Woillez, M., Poulard, J.-C., Rivoirard, J., Petitgas, P. and Bez, N. 2007. Indices for capturing spatial patterns and 
their evolution in time with an application on European hake (Merluccius merluccius) in the Bay of 
Biscay. ICES Journal of Marine Science, 64: 537-550. 

 
 
ICES CM Papers 
 
Cotter, J., Fryer, R., Mesnil, B., Needle, C., Skagen, D., Spedicato, M-T. and Trenkel V. 2007. A review of 

fishery-independent assessment models, and initial evaluation based on simulated data. ICES CM 
2007/O:04. 

Cotter, J., Petitgas, P. et al. 2007. FISBOAT manual of indicators and methods for assessing fish stocks using 
only fishery independent survey data. ICES CM 2007/O:27. 

Petitgas, P., Poulard, J.-C., Radtke, K., Spedicato, M.-T., Ibaibarriaga, L., Politou, C.-Y., Korsbrekke, K. , 
Deernberg, C. and Fernandes, P. 2007. Comprehensive indicator-based diagnostics of fish stocks using 
fishery-independent survey data: the FISBOAT report. ICES CM 2007/O:16. 

Pomarede M., Simmonds E. J., Hillary R., McAllister M., Kell L., Needle C., 2006. Evaluating the management 
implications of different types of errors and biases in fisheries resources surveys using a simulation-
testing framework. ICES CM 2006/I:28.  

Poulard, J.-C. and Trenkel, V. 2005. Relationship between survey indices and survey design and wind 
conditions: Bay of Biscay groundfish survey. ICES CM 2005/Z:02 

Spedicato, M.-T., Woillez, M., Rivoirard, J., Petitgas, P.,  Carbonara, P. and Lembo, G. 2007. Usefulness of the 
spatial indices to define the distribution pattern of key life stages: an application to the red mullet (Mullus 
barbatus) population in the south Tyrrhenian sea. ICES CM 2007/O:10. 

Trenkel, V. 2007. A biomass random effects model (BREM) for stock assessment using only survey data: 
application to Bay of Biscay anchovy. ICES CM 2007/O:03. 

Woillez, M., Petitgas, P., Rivoirard, J., Poulard, J.-C., and Bez, N. 2005. Indices for capturing spatial pattern and 
change across years of a fish population: an application on European Hake (Merluccius merluccius) in the 
Bay of Biscay. ICES CM 2005/L:16.  

Woillez, M., P. Petitgas, J. Rivoirard, J.-C. Poulard, P. Fernandes, R. ter Hofstedte, K. Korsbrekke, A. Orlowski, 
M.-T. Spedicato and C.-Y. Politou. 2006. Relationships between population spatial occupation and 
population dynamics. ICES CM 2006/O:05 

Woillez, M., Rivoirard, J. and Fernandes, P. 2006. Evaluating the uncertainty of abundance estimates from 
acoustic surveys using geostatistical conditional simulations. ICES CM 2006/I:15 

Woillez, M., Rivoirard, J., Petitgas, P. and Deerenberg, C. 2007. Selecting and combining survey based indices 
of fish stocks using their correlation in time to make diagnostics of their status. ICES CM 2007/O:07. 

 
 
Conference papers 
 
Pomarede M., Hillary R., Kell L., Needle C, Simmonds E. J., McAllister M., 2006. Evaluating the relative merits 

of fishery dependent and independent data in fisheries management. ICES Symposium on Fisheries 
Management Strategies, June 27th-30th Galway, Ireland. 

Trenkel, V., Rochet, M.-J. and Mesnil, B. 2007. From model-based prescriptive advice to indicator-based 
interactive advice. ICES Symposium on Fisheries Management Strategies, June 27th-30th Galway, 
Ireland. 
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Working Documents to ICES and GSCM Expert Groups 
 
Cotter J., Fryer R., Mesnil B., Needle C., Skagen D., Spedicato M.-T. and Trenkel V. 2007. A review of Fishery-

Independent assessment models, and initial evaluation based on simulated data. Working Document to the 
ICES Working Group on Methods of Fish Stock Assessment, Woods Hole, March 2007 

Ibaibarriaga L. and Petitgas P. 2006. Catchability analysis between abundance estimates with DEPM and 
Acoustic methods. Working Document to the ICES Working Group on Acoustic and Egg surveys for 
sardine and anchovy in ICES areas VIII and IX, Lisbon November 2006. 

Petitgas, P., Massé, J., Beillois, P. and Coppin, F. 2006. Proposition for a common data base structure for 
acoustic surveys. Working Document to the ICES Working Group on Acoustic and Egg surveys for 
sardine and anchovy in ICES areas VIII and IX, Lisbon November 2006. 

Spedicato M.T., M. Woillez, J. Rivoirard, P. Petitgas, P. Carbonara, G. Lembo. 2007. Usefulness of the spatial 
indices to define the distribution pattern of key life stages: an application on the red mullet population in 
the south Tyrrhenian sea. GFCM-SAC-Sub-Committee Stock Assessment.  Workshop on trawl survey 
based monitoring fishery system in the Mediterranean, Rome, Italy, 26-28 march 2007. 15 pp. 

Trenkel, V. 2006. Combining acoustic and DEPM survey indices in the biomass random effects model for stock 
assessment. Working Document to the ICES Working Group on Acoustic and Egg surveys for sardine 
and anchovy in ICES areas VIII and IX, Lisbon November 2006.  

 
 
 
Website 
 
The FISBOAT web site http://www.ifremer.fr/drvecohal/fisboat/ was an important tool for dissemination and is 
expected to carry on that role. The website is expected to be maintained and will give access to project outcomes 
and related matters. All project products are available on the website:  software codes and their documentation, 
data, case study reports, manuals of methods, project deliverables. All meeting documents were also posted on 
the website (agendas, meeting reports) as well as project reports (interim and final). Six documents were 
produced that compiled the project outcomes: a Manual of indicators and methods and a Report on their 
application to case studies, a Report on survey-data-only assessment models and their performance, a Manual on 
the FLR simulation evaluation loop and a Report of its application to case studies, a Report on how to create 
comprehensive assessments. 
 
 
 
ICES 2007 Theme Session O  
 
IFREMER organised and co-chaired the ICES 2007 Annual Science Conference Theme Session O on ‘Flying 
outside the ICES Assessment WG paradigm – Alternative approaches to providing fisheries management 
advice’. The Theme session  was intended to be a forum for presenting alternative methods using fishery-
independent information and stakeholder involvement for provide effective means to diagnosing the status of 
marine resources and communities and identifying management alternatives. The report available at : 
http://www.ices.dk/iceswork/asc/2007/themesessions.asp). Papers from the Fisboat project presented reviews of 
fishery-independent methods (O:4, O:16), described the manual produced by the project (O:27), provided 
application to case studies (O:10), and examples of the application of techniques (O:3, O:7). The final discussion 
led to suggest that ICES considers alternative stock assessment methods alongside traditional methods for 
selected stocks as a means of complementing current methods. 
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Publication project - Fisboat special volume  
 
IFREMER and CEFAS organised to publish jointly the novel fishery-independent assessment methods 
developed and their case study applications in a special volume of the journal Aquatic Living Resources. The 
special volume is expected to be written in a Manual style. Publication is expected for the end of 2008. The 
contents of the volume has been organised as follows.  
 
Manual of Fish Stock Assessment using Surveys and Indicators  
Eds. P. Petitgas (Ifremer), J. Cotter (Cefas), V. Trenkel (Ifremer), B. Mesnil (Ifremer) 
Special volume of Aquative Living Resources 
 
Introduction 
 
Article no.01 : Fish Stock Assessment using Surveys and Indicators : an overview  (Petitgas)  
 
Section 1 :  Surveys and indicators  
 
Article no.02 : Choices of surveys and indices (Cotter, Trenkel)  
Article no.03 : Manual of biological indicators (Trenkel, Cotter et al.) 
Article no.04 : Manual of spatial indicators (Woillez, Rivoirard) 
Article no.05 : Combining raw indicators into multivariate indicators (Petitgas, Poulard, Rivoirad) 
 
Section 2 : Methods to analyse time trends and changes 
 
Article no.06 : Non parametric methods for trends (Cotter)  
Article no.07 : Detection of recent trends and power analysis (Trenkel, Bogaards)  
Article no.08 : A statistical process control approach to detect change (Mesnil, Petitgas)  
Article no.09 : Analysis with Min/Max autocorrelation factors (Woillez, Rivoirard)  
 
Section 3 : Fishery-indepent assessment methods and management strategies 
 
Article no.10 : Indicator-based assessment and forecasting (Trenkel, Petitgas, Woillez) 
Article no.11 : Fishery-independent assessment models (Mesnil, Cotter, Trenkel, Needle et al.) 
Article no.12 : Fishery-independent management strategies and control rules (Cotter, Bogaards et al.) 
 
Section 4 : Simulation methods 
Article no.13 : Manual on FLR tools (Hillary et al.) 
Article no.14 : Manual on ALADYM (Lembo, Abella, Fiorentino, Spedicato) 
 
 
Section 5 : Illustrative applications 
 
Article no.15 : Indicator-based methods applied to case studies (Petitgas, Poulard, Radtke et al.) 
Article no.16 : FLR tools applied to case studies (Apostolaki, Ibaibarriaga, Bøthun, Bogaards, Pomarede) 
Article no.17 : ALADYM applications to case studies (Spedicato, Poulard, Radtke, Politou et al.) 
 
Concluding articles 
 
Article no.18 : Comprehensive assessments and management strategies (Cotter, Petitgas, Mesnil, Abella et al.) 
Article no.19 : Perspective from an invited author external to the Fisboat project 
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Incorporation of FISBOAT methods into the Fisheries advisory toolbox 
 
Fisboat simulation evaluation tools have been used during the course of the project in working groups of 
assessment bodies: FLR has been used for testing harvest rules on North Sea herring (ICES) and ALADYM for 
testing technical measures on red mullet (GFCM). Indicator-based methods are expected to be applied within 
ICES in 2008 for contributing to the assessment of data poor species at the ICES Working Group on Assessment 
of New MoU Species (WGNEW). Little information is known on these species but time series of survey data 
exist and the European Commission is asking for scientific advice on them. The ICES Study Group on 
Management strategies (SGMAS) may be a forum for continued collaborative methodological development of 
fishery-independent methods, in particular on what management rules to develop based on indicator-based 
assessments and methods and tools for evaluating harvest control rules. In addition, the EU project IMAGE 
(Indicators for fisheries management in Europe) may allow to continue on some of the topics developed in the 
Fisboat project. Also, the new science program of ICES is expected to develop coordinated research activity on 
the Identification of indicators, models and methods to ensure high quality advice for integrated management 
under the ecosystem approach.  
 
Thus fisheries management is now clearly envisaged in an ecosystem approach and there is an emerging need for 
indicator based assessments for data poor species but also for integrated ecosystem management. The fisheries 
advisory tool box of methods is therefore expected to expand and the fishery-independent assessment methods 
developed in the Fisboat project are thus expected to be in the list of new methods. Further developments of 
fishery-independent methods for ecosystem and fish stock monitoring,assessment and advice are expected to 
take place in the coming years, which will build on the Fisboat project outcomes. The Fisboat Manual of 
methods and applications (special volume) is expected to contribute to that purpose.  
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Document 1: Indicator-Based Assessment – Methods 
 
 
 
ICES CM 2007/O:27 
 
 

 
MANUAL OF INDICATORS AND METHODS FOR ASSESSING FISH STOCKS 

USING ONLY FISHERY-INDEPENDENT, SURVEY BASED INFORMATION 
 
 
 

Contribution to EC research project: 

Fishery Independent Survey Based Operational Assessment Tools 
(FISBOAT), 

DG-Fish, STREP n° 502572 (2004-2007) 
Co-ordinator:  P. Petitgas, IFREMER, Nantes, France 
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Abstract 
This manual discusses the use of indicators for assessing the state of a fish stock.  The 
indicators envisaged are estimated from trawl surveys, or trawl-supplemented surveys such 
as egg and acoustic surveys, in which catchability is maintained constant so far as practically 
possible.  A preliminary section considers factors that determine the appropriateness of a 
survey for each species and indicator, and makes suggestions for statistical estimators for 
quantitative and descriptive indicators.  A widely applicable selection of biological and 
spatial indicators is then documented in a standardised format that includes references to 
examples of their use and modifications.  The biological indicators include those relating to 
quantity of fish, size, and reproduction.  The spatial indicators characterise the geographic 
distribution of a stock and make allowance for low or zero densities of fish at some stations.  
The final section of the manual presents several presentational and statistical methods for 
assessing and interpreting trends in indicators.  A stock simulation model is described that 
may assist with determination of reference points for biological indicators.  Since indicators 
tend to be highly specific and normally many would be used to assess the state of a stock, 
multivariate methods form an important part of this section.  Indicators offer valuable 
biological and geographic information for supplementing existing model-based stock 
assessments.  They are also likely to form an important component of an ecosystem approach 
to fishery management, or they could be used pragmatically to tune harvest control rules in a 
form of adaptive management. 
 

Keywords: 
fish stock assessment; trawl survey; fish survey; biological indicator; spatial indicator; stock 
status;  
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1. Introduction 
Indices are measurable quantities that can be used to characterise a fish stock, for example, 
the mean length of the fish or the centre of gravity of its geographic distribution. When 
variation in a particular index relates to a process in the stock that one wants to follow, the 
index becomes an indicator of that process. This manual discusses indicators that are 
estimated from consistent time-series of results from scientific surveys conducted by research 
vessels (Anonymous 2004), or by other fishing vessels being operated purely for the ends of 
a survey and not for the pursuit of catches for commercial gain (since that goal would almost 
certainly cause bias).  The surveys envisaged use a standardised trawl (Anonymous 2006) 
with small-mesh codends such that selectivity can be assumed to be reasonably constant for 
all fish larger than the selection range of the codend mesh.  The trawling may only have a 
supporting role in the survey, for example for acoustic or egg surveys.  For surveys using 
other catching or sampling methods, the applicability or otherwise of each indicator should 
be carefully considered in relation to selectivity.  The fish species envisaged breed and 
recruit annually; some of the indicators may not be suitable for species that do otherwise, e.g. 
tropical species.  A single species is assumed unless stated. 
 
The relevance of indicators to the management of fisheries has become more widely 
acknowledged in recent years. In Northern Europe at least, the scientific community advising 
on fisheries management has mostly relied on quite complicated models to assess the state of 
fish resources and make recommendations. This approach entails significant costs in terms of 
data volume and quality, and of expertise as well, and is only affordable for the top-valued 
species and fisheries. Nowadays, other species that were of secondary interest in the past 
have become the primary targets of fishers, and scientific advice on the conditions for their 
sustainable exploitation is also sought by managers. In most instances, however, the rich data 
bases required for the conventional assessment models are lacking; other routes have to be 
considered, such as indicator-based methods. Moreover, States have embraced the 
"ecosystems approach to fisheries management" which, however defined, basically implies 
that the interactions between ecosystems' states or processes and fisheries have to be 
accounted for when decisions are made for fisheries. There is a broad consensus within the 
scientific community that building detailed quantitative models, continuing the traditional 
fishery science approach, to advise ecosystems-based management is simply not an option 
given the gaps in knowledge and the huge cost of getting the appropriate data. The alternative 
route is to identify and monitor a suite of indicators that reflect the state of, and possibly the 
human pressure on, the marine systems; management action is then advised based on 
observed changes in the indicators. Considerable scientific efforts are underway concerning 
indicators, as evidenced by a burgeoning literature. 
 
There are at least two potential difficulties in this context.  Firstly, like other environmental 
issues, fisheries issues are highly controversial. It can be expected that when systems of 
indicators – or indicator-based assessments – eventually get included in the management 
decision framework, they will be exposed to strong reactions, perhaps more so than 
traditional fish stock assessments, if only because they will be novel. A prime concern, 
therefore, is that the process to infer the state of fish stock, ecosystems, etc. from indicators 
should be formalised, in the sense of being rational, objective, defensible, and replicable by 
others; it should be amenable to non-ambiguous descriptions that are intelligible to 
stakeholders and managers. 
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Secondly, marine ecosystems and fish stocks are notoriously subject to high variability. Yet, 
it is quite likely that several indicators will be based on relatively limited samples (in terms 
of size, frequency, seasonal or area coverage). This will be particularly true for indicators 
collected during scientific sea surveys, which are already an important recourse for 
monitoring fish stocks when commercial fishery data are lacking or deteriorating (the topic 
dealt with by the FISBOAT project), and will be the prime – or even the sole –  source for 
several ecosystems indicators.  Surveys mobilise costly vessels and typically involve a 
limited number of stations and samples of moderate size, thus survey indicators often have 
large CVs. In any case, the signal-to-noise ratio is likely to be low. Procedures therefore have 
to be found to avoid casting measurement noise straight into the advice, and triggering undue 
action with all the political fuss that may follow. 
 
For the present, indicators could be used to supplement existing methods of model-based, 
single-species stock assessment  and management (Demaré 2006). This would incorporate 
some additional biology into what is otherwise mainly a computational exercise.  In due 
course, indicators are likely to form a fundamental part of an ‘ecosystem approach to 
fisheries’ (EAF) (Garcia and Cochrane 2005), Jennings (2005), Cury and Christensen (2005).  
Indicators might also be used pragmatically to inform a management system based on harvest 
or effort control rules negotiated relatively from year to year between management and 
industry.  A suite of well-chosen indicators are envisaged to tune such a system so that, after 
an initial period of trial and error, indicators relevant to the health of the stock respond 
somewhat predictably to management actions.  This would be a form of adaptive 
management (Walters 1986).     
 
This manual is intended as a contribution to the necessary formal structure for using 
indicators to assist the management of fisheries.  A preliminary, general section, section 2, 
discusses the appropriateness of the surveys used, and some possible estimators that can give 
different results from the same survey.  Section 3 summarises a small selection of potentially 
useful indicators of the biological state of a stock of fish.  Section 4 considers indicators of 
the spatial state of a fish stock, most of which allow for the occurrence of low or zero 
densities of a species of fish at some stations, making them very generally applicable. The 
last section, section 5, presents methods to assist with the interpretion of time-series of 
different indicators, singly and in combination. This aspect is important because indicators 
tend to be highly specific, so that use of many is often necessary to gain a full picture of a  
stock (Rice and Rochet 2005).  Additionally, the interpretation of indicator series often 
depends more on their trends up or down over time than on their absolute values (Jennings 
and Dulvy 2005; Trenkel et al. 2007). The general problem is how to assemble all the 
different results in a way that is informative and suitable for justifying decisions about 
management of the fishery. 
 
Table 1.1 is a list of the state indicators described in this manual, the marine environmental 
processes and population characteristics that they relate to, and the primary authors from the 
FISBOAT project in each case. The indicators are described briefly using a standardised 
format; each relates to a specific biological or spatial characteristic of the stock, or of 
selected age or length classes within it.  In several cases, the indicator described is one 
example from a suite of related indicators; where possible, references are provided to allow 
further information to be followed up.  The manual includes but is not limited to indicators 
and methods trialled during the FISBOAT project, 2005 to 2007.  The methods trialled were 
limited to those applicable to most of the project case studies with the available data and 
within the available time.  The FISBOAT project also considered non-indicator based 
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methods of stock assessment using surveys; these methods are described in a related project 
manual entitled 'Review of fishery-independent assessment methods' prepared by Mesnil 
(ICES CM2007/O:04). 
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Table 1.1  List of the indicators documented in this manual, the marine environmental processes and population 
characteristics that they are thought to relate to, and the primary authors of text. 

 
Indicator and 
abbreviation  

Processes affecting Population 
characteristics 

Contributors 

Intrinsic population 
growth rate, r 
 

Fishing, natural mortality, 
reproduction 

Numerical abundance 
summed over all ages 

Trenkel 

Total mortality, Z Fishing, natural mortality, 
migrations with age into 
or out of survey area 

Rate of dying, 
migrations related to age 

Rochet, Trenkel, Cotter 

Spawning stock in 
number, SSN 
 

Maturation, fishing, 
natural mortality, nutrition

Abundance of potentially 
breeding fish,  
sustainability of the stock 

Mesnil, Uriarte, 
Witthames 

Length statistics, Lbar, 
L25, L50, L75 

Recruitment, growth, 
fishing, natural mortality 
 

Growth, length frequency 
distribution, recruitment 

Trenkel, Mesnil, Cotter 

Total weight caught, W Fishing, natural mortality, 
growth, feeding 
 

Numerical abundance, age 
composition, growth 

Cotter 

Condition, C feeding, growth Nutritional status of 
individuals, reproductive 
fitness 

Cotter, Witthames 

Gonadosomatic index, 
GSI 

feeding, maturation 
 
 

Nutritional status, 
reproductive fitness 

Cotter, Witthames 

Length and age at 
maturity, LaM50, AaM50 

maturation, fishing 
mortality, evolutionary 
selection 

Size and age of potentially 
breeding fish. 

Rochet, Trenkel, 
Witthames, Cotter 

N-at-length, N-at-age, 
NaL, NaA 

Recruitment, growth, 
fishing, natural mortality 
  

Length and age frequency 
distribution 

Cotter 

Centre of gravity, CG Migrations, climate 
change, fishing, 
population size 

geographic location of the 
whole population or of 
concentrations of fish 

Woillez, Rivoirard, 
Petitgas 

Inertia, I Dispersal, environmental 
change, migrations 

Changing population size, 
migrations, climate and 
environmental changes 

Woillez, Rivoirard, 
Petitgas 

Anisotropy, An, 
Isotropy, Is 

Depth, currents, proximity 
to shore 

Alignment of the 
population in relation to 
environmental gradients 

Woillez, Rivoirard, 
Petitgas 

Global index of 
collocation, GIC 

Competition, genetic 
differences, dispersal 

Geographical overlap of 
two populations 

Woillez, Rivoirard, 
Petitgas 

Number of spatial patches, 
NOP 

Dispersal, common 
attractants, lack of mixing 

Patterns of movement, 
foraging strategies, 
population size 

Woillez, Rivoirard, 
Petitgas 

Positive area, PA Dispersal without regard 
to variations of abundance 

Population size, habitat 
preferences, food 
availability 

Woillez, Rivoirard, 
Petitgas 

Spreading area, SA 
 

Dispersal with regard to 
variations of abundance 

Population size, habitat 
preferences, food 
availability 

Woillez, Rivoirard, 
Petitgas 

Equivalent area, EA Dispersal assuming 
uniform abundance 

Population size Woillez, Rivoirard, 
Petitgas 

Microstructure index, MI Small-scale variability of 
habitat, abundance 

Relationship of population 
to environment 

Woillez, Rivoirard, 
Petitgas 
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2. Surveys and estimation 

2.1 Introduction 
This preliminary section is intended to be general to the use and interpretation of indicators 
from fish surveys.  In section 2.2, Trenkel warns of dangers arising from placing excessive 
reliance on survey results for the estimation of indicators without first carefully considering 
whether the survey will in fact provide appropriate data for the species and indicators of 
interest.   In section 2.3, Cotter discusses alternative estimators that can give widely differing 
results for an indicator using the same survey data. 
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2.2 Potential limitations of survey data as the unique 
source of information for stock assessment and 
management 
V. Trenkel 
IFREMER, Nantes, France 

Introduction 
There are several issues that need to be considered when using survey data as the unique 
source for carrying out stock assessments and providing management recommendations. The 
main issues leading to bias or uncertainty regarding evolution of the stock are  

1. the surveyed area does not encompass the stock area; 
2. the size/age classes sampled are not representative of the stock; 
3. variation in survey catchability. 

Survey area ≠ stock area  
There are various reasons why survey areas might not encompass stock areas, in addition to 
the problem of stock boundaries not being well known, or survey areas varying between 
years. The simplest reason is that part of the stock, or certain age classes, are outside the 
survey area. No single survey will cover the whole stock area for geographically wide spread 
species such as northern hake. For other species the problem might be that certain age groups 
are too deep to be caught by the survey gear, or too shallow for the survey vessel to access 
them, or they are not accessible to the survey gear because their habitat is for example not 
trawlable. Anchovy in the Bay of Biscay is an example of a species with a variable 
proportion of recruits too close to the coast and thus in too shallow water for the survey 
vessel being used. The visible effect of this is that numbers at age 2 are higher than numbers 
at age 1 in the previous year (Fig 2.2.1a). Similarly for cod in the North Sea IBTS survey as 
shown by the negative mortality rates for age 1 in many years (Fig 2.2.1b). The negative Z 
for cod age 5 are probably an effect of small sample sizes. The same effect can of course be 
caused by gear selectivity so that in each case it is necessary to find the most plausible 
explanation. 
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Figure 2.2.1. Total mortality estimates Z by age and year derived from survey numbers-at-age. Z estimates for 
age a in year t refers to the total mortality between age a in t and age a+1 in t+1. a) anchovy in Bay of Biscay; b) 

cod in North Sea. 

 
 
In addition to the above issues, stocks might move out of, or into the survey area in response 
to changing environmental conditions. Diel migrations or other activity patterns can also lead 
to variability in availability to the survey gear. 

Size classes sampled not representative of stock 
Many scientific surveys have been designed as young fish surveys. For example, what is 
called today the International Bottom Trawl survey (IBTS) started off as the International 
Young Herring Survey (IYHS) in the North Sea, then became the International Young Fish 
Survey (IYFS) before finally obtaining its current name. The change in objectives reflected in 
the varying names did not imply any change in design, rather a modification of the list of 
species for which information was collected. Hence in response to the initial objectives, a 
sampling trawl designed for catching young fish is still used today (GOV 36/47). The time of 
year of the survey was decided similarly. The initial survey took place in the first quarter as 
herring juveniles are then available. Currently a third quarter survey is also carried out.  
 
When the IBTS survey was extended to the Bay of Biscay and Celtic Sea (French EVHOE 
survey), the same GOV trawl was adopted despite the fact that substrates are often more 
difficult for trawling and the GOV is more suited for soft bottoms. The GOV was slightly 
adapted by removing the exocet Kite and replacing it by 6 additional floats. As the main 
target species are hake, megrim and monkfish, the survey is carried out in the fourth quarter 
when the recruits of those species become accessible. 
 
The consequence of designing surveys to target recruits is that there can be the problem of 
exploited size classes not being well represented in the survey catches. This can be due to the 
survey gear being used (selectivity), the vessel speed, or of course an area mismatch dealt 
with above. 
 
As an example, consider the length distribution of hake in landings and in the EVHOE 
autumn groundfish survey (Fig 2.2.2). In the survey the bulk of individuals is smaller than 20 
cm while in the landings the distribution is rather flat between 30 and 60 cm. Note that the 
legal landing size is 27 cm. The survey catches very few individuals in the size range 
targeted by the fishery. Thus, for northern hake, it seems that the EVHOE survey might be 
suitable to provide recruitment (age 0) and perhaps age 1 estimates, but it is unlikely that 
variations in total stock abundance or other indices relating to the adults will be captured 
reliably.  
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Figure 2.2.2. Length distribution of hake landings for the northern stock (left) and hake caught in the autumn 
groundfish survey in the Bay of Biscay and Celtic Sea (right).  

 

Variations in survey catchability 
A range of factors can make survey catchability vary between hauls and interannually. 
Between-haul variability will most likely reduce the precision of survey indices while 
interannual variation might bias estimates and affect time trends. The latter might be called a 
year-effect in survey catches. A study of the potential year-effect in survey catches for the 
EVHOE autumn groundfish survey taking place in the Bay of Biscay showed that, on 
average, 20% of interannual variation in abundance indices could be explained by survey 
conditions for benthic species, 11% for demersal, and none for pelagic species (Poulard and 
Trenkel, submitted) (Fig. 2.2.3). In contrast, survey conditions explained a smaller and 
decreasing part of the interannual variability in the coefficients of variations of these 
abundance indices and in species mean weight. Thus survey conditions might bias survey 
indices. In the same study it was found that taking account of survey conditions could alter 
time trends in species' abundance indices and, as a consequence, influence the stock 
assessment based on survey information.   
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Figure 2.2.3. Box plots with coefficients of determination R2 by species for best fitting models explaining 
survey indices by environmental (wind) conditions and survey design: (a) average survey density; (b) CV of 

average survey density and (c) individual mean weight. Results are grouped by habitat type: benthic, demersal 
(near sea floor) and pelagic.  
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2.3 Estimation of indicator values from surveys 
J. Cotter 
Cefas, Lowestoft, UK. 

Introduction 
When using a survey to estimate average values of an indicator over a stock or a sampling 
stratum of a survey, the statistical method of estimation used can significantly affect the 
computed results.  In this regard, indicators of quantity and attributes present slight 
differences in theory. This is most easily seen with simple numerical examples.   

Indicators of quantities of fish 
Firstly, consider  indicators of abundance (or weight) and suppose for simplicity that there 
are just three fishing stations in the survey area, yielding 1, 3, and 0 fish.  The mean density 
per station over the survey area is 33.134 = .  This estimate is responsive both to the number 
of zero-yielding stations and to the densities of fish observed when fish are found to be 
present.  On the other hand, the domain occupied by the stock implicitly includes only the 
two non-zero values, so that the mean density per station over the stock domain is 224 = .  
This different estimate is only responsive to the densities of fish when found to be present, 
while reduction of stock abundance is estimated by geographic contraction of the stock 
domain.  Of course, the catching of zero fish does not confirm that fish are absent, so the 
estimated stock domain is subject to sampling error as for the estimated mean density.  We 
could distinguish the two estimates by calling them the survey mean density per station and 
the stock mean density per station.  Indicators of the area occupied by a stock are presented 
in the section on spatial indicators. 

Indicators of attributes of the fish 
Next, consider indicators based on measured attributes of the individual fish caught, e.g. their 
lengths, and suppose for simplicity, using the same example, that the single fish at the first 
station was 50 cm, and the three fish at the second station were 10, 12, and 15 cm for which 
the station average is 12.33 cm.  Including the third station where zero fish were caught 
makes no sense when averaging attributes, so the ‘survey mean length’ is unimportant.  
However, we can estimate a stock mean length as (1) a mean for the fish or (2) a mean for the 
stations, i.e. 

1. as ( ) 75.21415121050 =+++ , or 
2. as ( ) 17.31233.1250 =+ . 

Note that the first estimate is weighted towards values observed at the station yielding most 
fish; it is a ratio estimator because it uses the number of fish at a station as a covariate of 
length to improve the precision of the estimate.  The second estimate gives equal weight to 
the average value at each station without regard to how many fish were caught (given that at 
least one was caught).  Choice between the two estimators may depend on the degree of 
within-haul correlation (Pennington and Vølstad 1994). A low degree, i.e. a good mix of 
lengths (in this example) at each station, suggests that the first estimator will be best because 
more fish implies more information about the stock.  A high degree, i.e. long fish 
predominate at some stations, short at others, suggests the second because, by contrast, more 
stations implies more information about the stock.  We could distinguish (1) and (2) as the 
ratio estimator, and the station estimator, respectively, of stock mean length.   
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A complication arises when attributes such as length or weight are not measured on all 
individuals caught by a survey but only on samples of the catch at some stations.  It is 
assumed that the fish in the samples are chosen randomly from the fish in the catch.  The best 
estimate of the average length or weight (etc.) at the station comes directly from the catch 
sample without raising.  However, ratio estimates require all fish caught at each station to be 
included in the calculations.  Consequently, catch sampling may rule out the use of ratio 
estimates, or it may require some sort of approximate fix, e.g. by raising the frequency 
distribution in the sample to one for the catch.  Of course, the statistical properties of the fix 
may be poor and difficult to establish leading possibly to bias of the station mean, or a 
downward bias of the variance causing excessive confidence in the mean. 

Standard errors 
Standard errors for the ratio estimator are available from (Pennington and Vølstad 1994) or 
(Thompson 1992).  Standard errors for the mean of haul results weighted equally depend on 
whether the stations can be considered as random sampling locations over the stock 
distribution.  If ‘yes’, the standard deviation uses the usual formula for simple random 
sampling.  If ‘no’, a spatial surface could be fitted to the haul results and the standard error of 
the integral derived from the model.  Geostatistical estimates may also be feasible using a 
variogram, and bootstrapping (Beare et al. 2002) is another possibility.  Standard errors are 
more complicated when catch sampling has taken place but an analytic approach is offered 
by Cotter (1998). 
 
For a review of the wide range of estimation methods including variances used for fish 
surveys, see section 2.6 in Anonymous (2004). 
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3. Biological indicators 

3.1 Introduction 
Biological indicators are available to measure most aspects of the health of a fish stock in 
addition to its numerical abundance.  These include growth, age composition, fecundity, 
recruitment, and total mortality.  Such indicators are ‘state’ indicators in the ‘pressure-state-
response’ (PSR) system for classifying indicators (Jennings 2005).  A selection of commonly 
considered biological indicators is presented here according to a format given by Halliday 
and Mohn (2001) for which see Appendix 1 of this report.  The advice given for each 
indicator comes from discussions among the participants in the FISBOAT project.  It is not 
intended to replace careful consideration of the relevance and value of each indicator to a 
particular stock. 
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3.2 Intrinsic population growth rate, r 

Description  
The slope of log total abundance against time. 

Stock attribute 
Numerical abundance summed over all ages.  

Derivation 
The indicator is Lotka's intrinsic population growth rate, r.  It has been suggested for fish 
populations by (Quinn and Szarzi 1993).   

Reference points 
Taking 0=r  as the target reference point assumes that, without any noticeable impact of 
fishing, the population would be stable in the long term, even though it varies from year to 
year. 

Interpretability 
If r is significantly lower (respectively higher) than 0, the population is decreasing 
(increasing). The expected and undesired effect of fishing is to decrease r, although many 
other factors might have the same effect.  A long term decline in r suggests that both 
recruitment and standing stock numbers are declining and implies that remedial action is 
necessary. 

Measurability 
r is readily and directly estimable from the time-series of abundance indices produced by a 
survey for all ages combined.  The model is ( )rNN tt exp1−= .  It can be estimated by fitting 
the mixed model, ( ) tt etrtN +++= ωβ0log  where ( ) ( )2,0~ σω Normalt  represents the year 

to year variance, and ( )2,0~ et Normale σ  represents random error.  The estimate of r will 
depend on the time-window chosen since the linear slope measured by r is merely an average 
of fluctuations over time.  The fitted linear slope acts as a smoothing function which may 
give a more stable indication of stock abundance trends than the time-series of raw 
abundance indices.  Deviations from linearity could affect measurability adversely. 

Sensitivity 
Since r is a measure for all ages combined it is likely to be affected by large recruitment 
pulses, particularly if numbers of adults are low.   

Example 
Not available. 

References 
Quinn, T.J. and Szarzi, N.J. (1993)  Determination of sustained yield in Alaska's recreational 
fisheries. International symposium on management strategies for exploited fish populations., 
Alaska sea grant college program, University of Alaska, Fairbanks, Alaska. 
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3.3 Total mortality, Z 

Description  
The coefficient of total mortality averaged over a given age range, i.e. the average mortality 
rate between years 1−t  and t of all individuals aged mina  to 1max−a . 

Stock attribute 
Z measures mortality due to fishing and natural causes.  It is also affected by loss or gain of 
fish from a survey area as a result of a net migration occurring in relation to age. 

Derivation 
Z is the sum of natural and fishing mortalities: MFZ += .  It comes from the exponential 
model of mortality in population dynamics.  The coefficient of total mortality, Z, is defined 
by ZNdt

dN −=  where N is abundance, t is time, and Z is conventionally regarded as 

positive.  This solves to ( )ZtNNt −= exp0  from which (i) ZtNNt −= 0loglog , or (ii)  
( )1log −−= tt NNZ .   

Reference points 
Z during a period of acceptable fishing mortality. 

Interpretability 
Z has been suggested as a robust indicator for exploited populations (Die and Caddy 1997).   
Different Z over different age ranges could be caused by less than full selectivity of the 
survey gear for some ages, or by migrations related to age particularly if the survey only 
covers part of the known range of the stock (Cotter et al. 2007).  Interpretation of Z requires 
that M be assumed constant if, as is usually the case, it is not known accurately. 

Measurability 
Z may be estimated by fitting linear regressions to log abundance indices by year-class over 
age, equation (i) above, the so-called year-class curve method (Cotter et al. 2007).  Removal 
of the youngest, and possibly the oldest ages may be necessary to find a satisfactory linear fit.  
Standard errors are available from the linear modelling.  Alternatively, Z may be estimated 
separately for each (age, year) to (age+1, year+1) using equation (ii) above (Beare et al. 
2002), and averaged over consecutive ages.    

Sensitivity 
Changes in Z over time are only likely to be discerned by surveys when commercial fishing 
effort changes substantially (Cotter, 2001).   Changes in Z regionally resulting from net 
migration from one region to another as the fish grow older can be detected for plaice (Cotter 
et al. 2007).  It is seldom possible to discern effects of changing M on Z except for year 
classes that are not susceptible to the fishery. 

Example 
See references. 
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3.4 Numbers-at-length, numbers-at-age: NaL, NaA 

Description 
The length or age frequency distribution. 

Stock attribute 
Age structure and growth of the population.  Relative numerical strengths of different year 
classes. 

Derivation 
Frequency distributions may be estimated for individual stations, strata, or for the survey as a 
whole. 

Reference points 
A sustainable stock should have a reasonable proportion of larger or older individuals 
capable of breeding, as well as to allow the commercial fishery to sustain itself when 
recruitment is poor.  Protection of size or age classes just in the breeding category may not be 
sufficient if  young fish tend not to be successful at breeding, or if the stock is poorly 
nourished such that individuals may not breed even though they have reached an age when 
they could. 

Interpretability 
A stock lacking large or old fish is likely to be over-fished and under-productive 
economically.  However, similar effects could also occur due to predation or disease for 
example.  Knowing indices of the abundance of predator-, and perhaps prey-species could be 
useful for interpretation of trends in frequency distributions.  Increasing proportions of large 
or old fish implies better survival with age and may signal recovery of a stock. 

Measurability 
• NaA is harder to measure than NaL since otoliths have to be read.  
• In general, RV surveys use gear with very small mesh so that most size and age groups 

will be fully selected.  However, allowances must be made to frequency distributions if 
this cannot safely be assumed.   Variability of the period when young fish settle to the 
bottom (and become vulnerable to a demersal trawl) relative to the survey period could 
affect estimated frequency distributions, as could the escape of large, fast-swimming 
individuals. 

• The following comments follow from the note on estimation in the preliminary section of 
this manual.  An age- or length-frequency distribution compiled from all fish of a species 
caught on a survey (or in a sampling stratum) will be most influenced by the frequency 
distributions prevailing at the stations where most fish were caught.  [This estimate is to 
frequency distributions as the ratio estimate is to means.]  This estimate would be 
preferred if the highest yielding stations are thought to provide the best indication of the 
frequency distribution for the whole stock.     

• The alternative is to estimate a probability density for numbers-at-length or -at-age at 
each station where fish were caught, i.e. a histogram scaled to integrate to unity.  Then 
the probability density for the stock (or a stratum) is obtained by averaging the station 
densities for each length or age class.  [This estimate is to frequency distributions as the 
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station estimate is to means.]  This estimate would be preferred if length frequencies 
differ noticeably between stations and no single station is thought to be more 
representative of the stock than another.    

Sensitivity 
In general, length and age composition of a stock change rapidly in response to fishing 
pressure, then numbers of older, larger fish remain low.  Both indices are affected by pulses 
of recruitment, and this may be a more influential factor than slight changes of fishing when 
fishing pressure is high. 

Example 
Not available 

References 
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3.5 Spawning Stock in number: SSN 

Description 
Mean catch in number of mature fish per tow (or per standard time or distance unit) realised 
during a survey.  

Stock attribute 
Abundance of fish with potential to breed.  Sustainability of the stock. 

Derivation 
For trawl surveys, SSN is probably most simply computed in the same way as the usual 
survey abundance index but with numbers-mature at each fishing station substituted for 
numbers, or numbers-at-age. 
 
Egg surveys directly provide an index of spawning stock biomass (SSB).  If appropriate 
corrections are applied for mortality to the estimates of egg abundance, and if estimates of 
daily specific fecundity are available, then the index can be taken as an estimate of absolute 
SSB.  Otherwise, it will only estimate relative SSB.  SSB is converted to SSN by dividing by 
the mean weight of the mature fish in the population.  The latter parameter, as for the 
fecundity parameters, is obtained by averaging the estimates from the individual fishing 
hauls, using weighting factors proportional to the egg abundance divided by the mean weight 
of the anchovies in the haul.   

Reference points 
Possibly, lowest historically observed estimates known to sustain a satisfactory recruitment. 

Interpretability 
• The index will probably be most closely related to numbers of the younger age classes 

that are mature since their abundance will usually be much higher than that of larger, 
older fish, depending on rates of total mortality, and annual recruitments.   

• Changes in SSN are likely to be due to fishing but could also be caused by natural events.   
• Further understanding of the health of a stock may be acquired by looking at indices for 

first-time and for replicate spawners separately: stocks subject to high F or high M 
generally show higher proportions of first-time spawners.   

Measurability 
Accurate assessment of maturity is crucial (Kjesbu et al. 2003; Murua et al. 2003) 
particularly as the proportion mature is likely to be most hard to estimate accurately for the 
most numerous age classes just coming into maturity.  See also 
www.ices.dk/datacentre/datras/NSIBTSmanualRevVIIdraft.pdf.   Careful standardisation of 
the maturity assessments across years and across survey crews is essential to avoid step 
changes in time or space purely as a result of inconsistent technique.  Objective histological 
methods can be helpful for quality control of maturity assessments based on external 
morphology.  The seasonal timing of the survey is also very important.  Summer surveys can 
be especially poor for estimating maturity of species that spawn in winter or spring unless 
histological criteria are used to hindcast or predict maturation in the previous or next 
spawning season.   
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Sensitivity 
SSN indices are likely to reflect changes in the age composition and reproductive potential of 
a stock over time, though precision will depend on standardisation of the techniques of 
maturity staging.  

Example 
Not available. 

References : 
Kjesbu, O.S., Hunter, J.R. and Witthames, P.R. (2003)  Report of the working group on 
modern approaches to assess maturity and fecundity of warm- and cold-water fish and 
squids. Institute of Marine Research, Bergen, Norway.  Fisken og havet, 12, 140 pp. 
 
Murua, H., Kraus, G., Saborido-Rey, F., Witthames, P.R., Thorsen, A. and Junquera, S. 
(2003)  Procedures to estimate fecundity of marine fish species in relation to their 
reproductive strategy.  Journal of northwest Atlantic Fisheries Science 33, 33-54. 
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3.6 Length statistics: Lbar, L25, L50, L75 

Description 
Mean (Lbar) or percentiles (L25, etc) of fish lengths found in survey catches.    

Stock attribute 
Growth, length frequency distribution of stock, recruitment success annually. 

Derivation 
Descriptive statistics for the length frequency distribution. 

Reference points 
Options are: 

• Length at 50% maturity.   
• Lengths associated with biological events such as migrations. 
• Lengths associated with the fishery, e.g. length at 50% selectivity, minimum landing 

size (MLS). 
• Historic values when the stock was deemed to be at a satisfactory level. 

Interpretability 
• In general, high fishing intensity reduces the relative abundance of large compared to 

small fish for two reasons: (a) large individuals are mostly older and therefore have had 
more exposure to fishing gear, and (b) because trawlers tend to catch large fish more 
effectively than small.   

• The L25, L50, and L75 percentiles characterise the smaller, middle sized, and older fish, 
respectively, and are therefore expected to respond differently to recruitment pulses, 
growth factors, and to changes in abundance and spawning stock biomass.   

• A short selection of references relevant to interpretation of fish length are by Ault et al. 
(2005), Kvamme and Froysa (2004), Deriso and Parma (1988), Piet and Jennings (2004),  
Jennings et al. (1999), and Rochet and Trenkel (2003).  

• Lbar for mixtures of species has been shown to decrease in exploited communities 
(Jennings et al. 1999). 

Measurability 
Please refer to the note on estimation in the Introduction to Biological indicators.  Care 
should be taken to standardise the bodily extremities to be used to measure each species, 
particularly across national surveys, and across years (Beckett 1983).  Estimation of Lbar 
with omission of fish shorter than a given length, e.g. the length best separating 0 and 1-
groups, or the MLS, is likely to improve its precision considerably when annual recruitments 
are very variable.  

Sensitivity 
Lbar is most influenced by the smallest, youngest year classes included in the estimate 
because they are usually the most numerous.  Use of a ratio estimator, rather than a station 
estimator (see section on Estimation of indicators from surveys, above) would enhance this 
effect.  It follows that entry of a new year class into the estimate could alter Lbar over only 
one year if that year class had been affected by a step-change of conditions affecting growth 
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or abundance.  However, the full effect on Lbar would not be manifest until all living ages 
had experienced the change.  L25 is affected by the number and size of young fish; thus low 
recruitment of young, small fish would be expected to cause L25 to increase in the same 
year, and vice versa.  L50 would be expected to respond in a similar way to Lbar.  Fish 
longer than L75 are likely to belong to several age classes.  Therefore, L75 is likely to 
decrease gradually over years in response to selective removal of predominantly large 
individuals by fishing faster than they are replaced by growth. 

Example 
Fig. 3.6.1 illustrates length-based indicator series derived from the EVHOE demersal trawl 
survey of the Bay of Biscay, one for anchovy and one for hake.  No trends are evident in the 
Lbar or L quantile series for either species but, curiously, a linear decline in length variance 
could be fitted to the variance of length for hake.  The explanation for this is not known. 
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Figure 3.6.1: Time series of indicators for Bay of Biscay anchovy (code= ENGRENC) and hake (code= 

MERLMER) with long term trends. Data from the IFREMER  EVHOE demersal trawl survey of the Bay of 
Biscay. 
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3.7 Survey catch weight: W 

Description 
The total weight of one (or more) species caught on a survey with constant fishing effort.   

Stock attribute 
Stock biomass, size composition. 

Derivation  
Many surveys routinely weigh catches by species.  If such data are not available, weights 
may be estimated for each species using the allometric formula: ∑= l

b
l alnW  where l is 

length class, ln  is the numbers caught during the entire survey in that length class, and a and 
b are constants for the species, the first being a scaling factor for units, the second being a 
factor relating to change of shape with increasing size.  a and b are determined by plotting 

( )ll nWlog  against llog  using a sample of weighed and measured fish – more details are 
given for the Condition index, below.  The estimates of a and b should be up-to-date.  An 
even simpler weight index derived from length data may be adequate for some species; i.e. 
assume that ∑∝

l llnW 3 .  In this formula, 3=b  implies no change of shape with size. 

Reference points 
A possibility is to use historical estimates of total survey weight when the stock was 
considered to display a satisfactory age composition, i.e. one having sufficient mature age 
groups present to provide resilience to occasional poor recruitment or temporary, heavy 
fishing pressure. 

Interpretability   
• Condition of the fish (weight/length) may be important for interpreting W but only if fish 

weights are measured directly, rather than being estimated from lengths.   
• The quality of information that W provides about the weight of fish in the stock depends 

partly on the relative catchabilities of different sized fish by the survey; e.g. catchability 
of large individuals of strongly swimming species may be low on surveys with short 
tows.   

• Calculation of W might omit fish shorter than the minimum landing size (MLS) for the 
fishery so that W becomes of direct relevance to the legal yield of the fishery.  It might 
then be serviceable as guidance for a harvest control rule.   

• Standardising W as a total weight for the entire survey area is proposed because high 
yielding stations then have most influence on the result.  This could make the index of 
immediate relevance to commercial fishers who tend to target such localities.  On the 
other hand, comparison of the survey mean weight per station with the stock mean weight 
per station (see section on Estimation of indicators from surveys, above) while also 
noting any changes in the estimated domain of the stock may be more relevant for 
ecological studies. 

• W could also be translated into a mean individual weight.  This would be akin to a 
condition index (see C below) but without allowing for body length.  The ratio and the 
station estimator of the stock mean individual weight might then have different  
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interpretations due to the different weightings given to stations yielding different 
numbers of fish (see section on Estimation of indicators from surveys, above).  The ratio 
estimator could be more relevant for a fishery that focuses on aggregations of fish, while 
the station estimator could be more relevant for regional, ecological studies. 

Measurability  
W can be expected to vary a lot for migratory stocks that are not satisfactorily enclosed by 
the survey domain, or whose distribution in relation to fishing stations varies with 
abundance.  Variation from year to year of stations fished, or in the duration of tows should 
be allowed for by raising to a standard level of effort equivalent to the complete, standard 
survey while recognising that bias might have been caused by omission of certain stations.  
The season of the survey should be kept constant because W will be affected by seasonal 
changes in availability of food, and by enlargement of gonads for breeding.  A constant 
selectivity of the survey trawl and fishing method with respect to size is crucial.  For some 
ground-loving species, e.g. certain flatfish, distance towed over the ground may be more 
relevant as a standardising measure for survey CPUE than the duration of the tow in minutes.   

Sensitivity 
A merit of W is that it is less influenced by varying recruitment from year to year than raw 
length indices such as Lbar because young fish, although very numerous, are very small, so 
their abundance and weight tend to cancel in the overall index.   W would be influenced by 
changing abundance and average condition of individuals. 

Example 
Heessen et al. (1997) state that the International Bottom Trawl Survey of the North Sea and 
Skagerrak covered the whole of the North Sea, Skagerrak and Kattegat from 1974 onwards.  
Catch-at-length data for quarter 1 were obtained for cod from the ICES secretariat and 
average catch weight per fishing station per rectangle was estimated using a ratio estimator 
for each of the 138 rectangles in the standard area used to estimate the abundance index for 
cod.  Weight indices were estimated using ∑∝

l l lnW 3
. .  The results were summed over all 

rectangles to estimate W for the whole survey.  The time series from 1974 to 2005 is shown 
in fig. 3.7.1, below, together with the numbers of rectangles where positive catches of cod 
were taken.  The obvious downward trend in W from approximately 1980 is consistent with 
the well known decline in the North Sea cod stock in recent years.  Variable results in the 
1970s may possibly have been due to inconsistent survey practices in the early days of this 
survey.  However, no attempt has been made here to remove inconsistencies at any time in 
the series.  See Heessen et al. (1997) for details of inconsistencies over the period. 
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Figure 3.7.1.  International Bottom Trawl Survey, quarter 1: cod weight indices, W, computed from numbers-

at-length by ICES rectangle assuming isometric growth.  Data supplied to FISBOAT by ICES secretariat. 
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3.8 Condition: C 

Description 
Condition refers to average body weight for a given body size.  It is often normalised as 
Fulton’s condition index (Anderson and Neumann 1996), 3kLW , where k is chosen for 
appropriate scaling. 

Stock attribute 
Nutritional status of individuals, reproductive fitness. 

Derivation  
C may be estimated by a in the allometric equation ∑= l

b
l alnW  where l is length class, ln  

is the numbers caught in that length class, a measures condition as well as serving to scale 
the units of measurement, and b represents the changing shape of the species with increasing 
length.  Partitioning this equation by length gives b

ll alnW = .  Taking logs and substituting C 
for a gives ( ) lbCnW ll logloglog += .  Therefore a regression of log (average weight per 
individual at length l) on llog  will allow estimation of Clog  as the intercept and b as the 
slope.  In many studies, b is standardised at 3, as for the Fulton index, implying growth 
without change of shape. 

Reference points 
Comparison with historic data might reveal when problems are occurring. 

Interpretability  
• Low condition implies too much competition for available food.  This in turn implies that 

some mature individuals may not mature reproductively for the coming spawning season, 
or that their fecundity may be reduced by follicular atresia (Thoresen et al. 2006; 
Kennedy et al. in press).  Low condition can also increase the age of first maturity, and 
possibly increase natural mortality of post spawning individuals.   

• Condition varies in males and females according to season, for example after a winter 
fast, and over the reproductive cycle especially for species with a capital spawning 
strategy (Stearns 1992).  See also (Lambert et al. 2003). 

• Low condition implies reduced incomes for fishers because they will not attain high 
prices for the fish they catch.   

Measurability  
The regression could be carried out at each station and the estimated C averaged over all 
stations; i.e. a station-based estimator, giving equal weight to each station yielding fish.  
Alternatively, the regression could be carried out for all stations at once; this is a regression 
analogue of a ratio estimator because the results at each station are automatically weighted in 
relation to the number of fish caught at each length.  The weights assigned to each station 
will therefore vary from length class to length class.  Please refer to the section on 
Estimationof indicators from surveys, above. 

Standard errors for a and b estimated from a regression are likely to over-estimate confidence 
in the result if the individual fish in the sample were not independently and randomly 
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selected from the stock, as they would not be if taken with a trawl survey for example.  This 
should be kept in mind when making comparisons from year to year. A spatial model could 
be a good way to summarise station-by-station results because condition may vary with 
location, particularly with latitude if accompanied by changing temperatures. Kriging is 
another possibility. 

Sensitivity 
Not known.  

Example 
Not available. 
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3.9 Gonadosomatic index: GSI 

Description 
The gonadosomatic index (GSI) is the ratio of gonad weight to body weight. 

Stock attribute 
Nutritional status, reproductive fitness. 

Derivation  
Average gonad weight/body weight, or gonad weight/length3. 

Reference points 
Comparison with historic data might reveal when problems are occurring with regard to 
stock reproductive potential. 

Interpretability  
• GSI depends on fish size and will obviously be low for immature individuals.  It will also 

increase rapidly towards the start of the spawning season.  It is likely to be highest after 
ovulation when the first batch of eggs is ready for spawning, and lowest just after 
spawning when fish have not only lost their reproductive material but are also likely to 
show low bodily condition.  

• GSI may vary with location, particularly with latitude if accompanied by changing 
temperatures. Spatial modelling or Kriging could be helpful for seeing these effects.  

• A low GSI in fish of mature age at the start of the spawning season may imply skipped 
spawning (Rideout et al. 2005), suggesting too much competition for available food, as 
well as low reproductive success in the coming spawning season, either through lack of 
fertile adults or through reduced egg production. 

Measurability  
Surveys intended to estimate GSI should be timed to coincide with the onset of spawning, or, 
if that is not possible, to avoid the post-spawning period.  They should occur in the same 
season each year.  At least a sample of fish from every fishing station should be measured 
individually for length, body weight, and gonad weight.  Stratification by depth bands may 
be helpful for estimation if GSI is related to depth, as it is for some species (Rijnsdorp 1989).  
A cut-off length for exclusion of immature individuals would save much pointless disection 
work on deck.   

Weighing gonads requires that they be removed from the fish and weighed on a balance 
capable of resolving down to 1% of the gonad mass.  Motion compensated balances capable 
of resolving to 0.1g are required for small fish such as sprat or anchovy weighed at sea.  An 
advantage of GSI over maturity indices is that it does not require accurate maturity staging.  

Sensitivity 
The GSI is very sensitive to the maturity stage and the timing of the spawning cycle. 

Example 
Not available. 
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3.10 Length and age at maturity: LaM50, AaM50 

Description 
The length or age at which 50% of the individuals in a fish stock are estimated to have 
reached reproductive maturity. 

Stock attribute 
Reproductive capability, spawning stock biomass, nutritional status.   

Derivation 
The estimated proportion mature at each length is plotted against length and the length at 
which 50% of individuals are mature is the LaM50.  Fitting a logistic or other function may 
be the best way to estimate this statistic using reaction norms (Heino et al. 2002).  If otoliths 
are removed at the same time as gonads are examined, and subsequently read without 
breaking the link with the observation of maturity, the AaM50 can be estimated similarly 
with a plot over age.   

Reference points 
Reaction norms are used to describe the phenotypic range of LaM50 and AaM50, and to 
identify evolutionary selection of alleles favouring early maturation.  They may already be in 
the genetic structure of the population, or they may be introduced by genetic drift and/or 
mutation (Heino et al. 2002). 

Interpretability 
• AaM50 has been found to decrease under the effect of fishing  (Trippel 1995; Rochet et 

al. 2000). If individual growth remains similar under the impact of fishing, LaM50 will 
decrease in a similar manner. Compensatory growth might, to some degree, reduce the 
impact of fishing on the observed reduction in length at maturity but strong signals 
should still be detectable.   The reaction norm method is used to investigate evidence for 
evolution of maturation stage with respect to size and age after several generations of 
high fishing mortality.   

• LaM50 and AaM50 may both vary with location, particularly with latitude if 
accompanied by changing temperatures.  

Measurability 
Please refer to Measurability of Spawning stock number (SSN) for comments on estimating 
maturity and the timing of surveys.  Since maturity staging requires that fish be opened and 
the gonads examined carefully, it is time-consuming on deck.   

Sensitivity 
Problems with achieving consistent maturity staging from year to year when using only 
external morphology may seriously reduce the sensitivity of LaM50 and AaM50 to fishery 
and environmental factors.  Better sensitivity could be expected if histological examinations 
are carried out for each fish but this is obviously much more time-consuming. 

Example 
Not available. 



 

 46

References 
Heino, M., Deickmann, U. and Godø, O.R. (2002)  Measuring probabilistic reaction norms 
for age and size at maturation.  Evolution 56, 669-678. 
 
IBTS w.g. (revision VII in draft in 2007).  Manual for the international bottom trawl surveys.  
Appendices VII Finfish maturity key, and VIII Four stage maturity key for skates and rays 
(Rajidae).  www.ices.dk/datacentre/datras/NSIBTSmanualRevVIIdraft.pdf   
 
Rochet, M-J., P.A. Cornillon, R. Sabatier & D. Pontier. 2000  Comparative analysis of 
phylogenetic and fishing effects in life history patterns of Teleost fishes. Oikos 91: 255-270. 
 
Trippel, E.A. 1995  Age at maturity as a stress indicator in fisheries. Bioscience 45: 759-771. 



 

 47

4. Spatial indicators 

4.1 Introduction 
Spatial indicators are statistics aimed at describing and summarizing the spatial distribution 
of populations, in terms of location, fish density or possibly an environmental variable e.g. 
depth.  A list of 10 geostatistical indices are here proposed (Woillez et al., 2007) to 
characterise occupation, aggregation, location, dispersion, correlation and overlap. These 
notions are somewhat related, e.g., aggregation, dispersion and occupation, and formal 
relationships exist between indices. The centre of gravity of a population with a measure of 
dispersion around it had been proposed already (Swain and Sinclair 1994, Atkinson et al. 
1997, Bez and Rivoirard 2001). The occupation and aggregation indices are not truly spatial 
in the sense that they are sensitive to the histogram and not to the spatial location of values. 
Various indices to characterise aggregation have been suggested (area coverage: Swain and 
Sinclair 1994, Gini index: Myers and Cadigan 1995, spatial selectivity index: Petitgas 1998) 
which all relate to the area coverage of highest values. But the spreading index is more 
general in the sense that the amount of zeroes do not affect this index. Therefore in the 
calculation of the spreading index the delineation of the data positive domain is not 
necessary. The spatial indices are useful in characterising the spatial organisation of the life 
cycle. It can be evidenced that young immature fish, young matures and older matures differ 
in some aspects of their spatial distributions, in particular for location, aggregation and 
dispersion (Woillez et al., 2007). The spatial indices have the potential to be used in a 
monitoring system so as to detect changes in the spatial distributions, which could be helpful 
in relating the spatial distribution properties of fish stocks to their dynamics, climate change 
or habitat conservation.  
 
When selecting spatial indicators for this manual, care has been taken to avoid the problem of 
zero density values by excluding statistics that would depend on the inclusion or exclusion of 
zero density values according to their belonging to a more or less arbitrarily delineated 
domain. For instance, the mean of the density values within a given domain is not considered 
here, nor the variance or the Gini index of these values to measure their statistical dispersion. 
On the contrary, the contribution of the zero density values is zero in the statistics that have 
been selected here. For instance, the center of gravity, or mean location, of a population will 
depend on whether the density value at a sampled location is zero or not, but if it is zero, its 
numerical contribution to the center of gravity will be zero. 
 
In particular the contribution of zero density values is zero in all statistics based on the 
individuals of the population: e.g. the mean location of the population, which is the mean 
location of the individuals that constitute this population (in such a case the statistics are 
weighted by the fish density). By contrast, the Positive Area looks at where the fish density 
values are strictly positive but does not depend on the level of these density values, that is, on 
each individual. 
 
Some of the selected statistics (e.g. the center of gravity) would change if the fish density 
values were permuted between sampled locations (even assuming a regular sample grid). The 
other statistics would be unchanged: for instance the Positive Area measures the domain 
covered by the non-zero density values, not its shape, and it would be unchanged by 
permuting density values. Similarly the Spreading Area or the Equivalent Area will depend 
on the histogram of density values, not on their location (at least assuming a regular sample 
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grid). As a consequence these statistics are not dependent on the large-scale spatial structure. 
However they do depend on the fine scale structure through the 'support', i.e. the surface in 
size and geometry (e.g. the trawled area) on which each fish density is measured. 
 
Note: references for the following indicators are collected together at the end of  section 4. 
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4.2 Centre of gravity: CG 

Description 
The center of gravity is the mean location of the population, that is, the mean of the location 
of its individuals (Bez, 1997). 

Stock attribute 
Mean location of the population. 

Derivation 
Let x be a point in two-dimensional space (short for the usual two-dimension notation (x, y)), 
and z(x) be the density of population at location x. Then, the total abundance of the 
population (Q) is calculated from: 
 

∫= xxzQ )d( , 
 
and the probability density function of the location x of a random individual is z(x)/Q. The 
centre of gravity (CG) is: 
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In practice, this statistic is estimated from the data through discrete summations over sample 
locations. In the case of irregular sampling, areas of influence around samples are used as 
weighting factors (Figure 4.2.1). Practically, from sample values zi at locations xi, with areas 
of influence si, we have: 
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The area of influence of a sample location is defined as the area made up of the points in 
space that are closer to this sample than to others. It can be evaluated by overlaying a very 
fine regular grid and counting the grid points closer to the sample. Known or supposed 
boundaries (e.g. land, a limit distance of influence from a sample location) of the sampled 
population may be used. 
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Figure 4.2.1. Areas of influence (delimited by the black lines) of sample points (in red). 

 

Reference points 
CG during a period of acceptable state of the population.  

Interpretability 
The CG indicates the mean location of the surveyed population. Note that fish may not be 
present at the CG location (which may be on land, e.g. within an island). Note also that part 
of the population may be not represented, when not covered geographically by the sampling. 
To check that movements of CG when following a series are not due to changes in the 
sampling design (e.g. due to bad weather), the CG of the sample locations (that is, 
unweighted by fish density) can also be produced. 

Measurability 
The estimated CG is sensitive to high fish density values. It may differ from the true 
unknown CG, particularly when high density values exist (whether sampled or not). 

Sensitivity 
Despite the possible difference between true and estimated CG, a shift during a series is 
likely to represent an actual shift, when it is gradual. On the other hand, an eccentric 
estimated CG requires a visual inspection of the fish density to detect the causes (e.g. unusual 
presence of high density values in some remote area, or disappearance of usually high values 
in some region; see the indicators Inertia and Number Of Patches). 

Examples 
Several authors have used the center of gravity, also referred to as the distributional centroïd 
or as the center of an ellipse to describe the distribution of a population or a life stage of a 
population such as Walleye pollock eggs and larvae (Kendall and Picquelle, 1990), Pacific 
hake larvae (Hollowed, 1992), cod off Newfoundland (Atkinson et al., 1997), yellowtail 
flounder off the Grand Bank (Brodie et al., 1998) or European hake in the Bay of Biscay, 
eggs and larvae (Alvarez et al., 2001) as well as fish at age (Woillez et al., 2007 ). For 
example, the CGs have been used to describe the distribution of the strong year classes on the 
Pacific hake late stage larvae and also the systematical shift towards the south east of cod off 
Newfoundland from 1987 to 1993. Distributions have been also described temporally along 
the season, e.g. for eggs and larvae of the European hake in the Bay of Biscay and of 
Walleye Pollock. 
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4.3 Inertia: I 

Description 
The inertia is the variance of the location of the individuals of the population, that is, the 
mean square distance between an individual fish and the centre of gravity of the population 
(Bez, 1997). 

Stock attribute 
It describes the dispersion of the population around its centre of gravity. 

Derivation 
With the notations used for CG, the inertia (I) is 
 

I = Var(x) = 
∫
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Reference points 
I during a period when the population was in an acceptable state. 

Interpretability 
The inertia I indicates how dispersed the population is around its center of gravity. 

Measurability 
I is sensitive to high density values.  I is homogeneous to square nautical miles (in 2D). The 
square root of I, that is, the root mean square distance between individuals and their CG, may 
be preferred, being homogeneous to nautical miles. 

Sensitivity 
An increase in I, for instance, indicates a population more dispersed around its CG, i.e. high 
density values are more scattered. While the population is then scattered over a larger region, 
the actual area covered by the population may be smaller (see the different Area indicators). 

Examples 
Most of the authors cited for the CGs also described the studied population in terms of 
inertia, or they refer to the size of its graphical representation through an ellipse (see next 
section on anisotropy). Brodie et al. (1998) showed a drop in the area of the ellipse for the 
yellowtail flounder of the Grand bank in late 1980 after a period of stability. Atkinson et al. 
(1997) showed that a shift of the CG is accompanied by a decrease of the size of the ellipse, 
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i.e. the inertia. For the European hake in the Bay of Biscay, concerning the eggs, the size of 
the ellipses increased somewhat from February to May in both directions, N-S and W-E 
(Alvarez et al., 2001), while the inertia increased with the age for fish stage (Woillez et al., 
2007). 
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4.4 Anisotropy and isotropy: An, Is 

Description 
When the dispersion of the population around its center of gravity is the same along every 
direction, the spatial distribution is said to be isotropic. In general, the dispersion of a 
population around its centre of gravity is not identical in every direction of space: there is an 
anisotropy. The root mean square distance to the center of gravity is maximal along the first 
principal axis, and minimal along the second principal axis, orthogonal to the first one (in 
2D). The anisotropy index is taken as the ratio (>= 1) between these distances, and the 
isotropy index as the inverse ratio (<= 1). 

Stock attribute 
Anisotropy measures the elongation of the spatial distribution of the population. 

Derivation 
In two dimensions, the total inertia of a population can be decomposed on its two principal 
axes, orthogonal to each other, explaining respectively the maximum and the minimum of the 
inertia. These two principal axes and their inertia can be obtained as the eigen vectors and 
values of a principal component analysis of the coordinates of the individuals of the 
population (i.e. the coordinates of the samples weighted by the fish densities) (Bez, 1997). 
The square root of the inertia along a given axis (or root mean square distance to CG) gives 
the standard deviation of the projection of the location of the population along that axis. 
These can be represented conveniently on a map with a cross depicting the two principal 
directions (Figure 4.4.1), or with an ellipse (with area proportional to the total inertia). The 
anisotropy index (>= 1) is the square root ratio between the maximum and the minimum of 
the inertia. Similarly, an index of isotropy can be defined as the inverse of anisotropy, 
ranging more conveniently from 0 to 1: 
 

minIsotropy
max
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Figure 4.4.1. Two examples of spatially distributed data sets, with anisotropy being more marked in the second 
case. The black cross is located on the center of gravity, from which it represents the square root of inertia along 

the two principal directions. 
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Reference points 
The indicators during a period of acceptable state of the population. 

Interpretability 
The anisotropy index gives roughly the elongation of the spatial population. It does not take 
into account the actual shape of the distribution, which may be different from being elliptical 
or may be constituted by different patches.  

Measurability 
The anisotropy and isotropy indices are equivalent, being the inverse of each other. However, 
since the anisotropy index is unbounded above 1, the isotropy index is more robust and may 
be more conveniently used, e.g. in correlation or regression analyses. 
 
In case of isotropy, that is, when the anisotropy and isotropy indices approach 1, the principal 
axes, orthogonal to each other, become arbitrary. 

Sensitivity 
Sudden changes in anisotropy index may be due to the disappearance or, on the contrary, the 
appearance, of patches of fish in some areas. 

Examples 
Few authors have discussed the anisotropy even if it was available in the representation 
mode. In Alvarez et al., 2001, the direction of the principal axis of the hake egg distribution 
in the Bay of Biscay corresponds to that of the shelf break, i.e. NW-SE, along the whole 
sampling period. Woillez et al., 2007, completes the description for the fish stage, showing a 
preferential direction, more marked for age 0 and age 5+. The direction for age group 0 
corresponds roughly to muddy sediment off Brittany. For ages 4 and 5+, the direction 
corresponds to the shelf edge, where older hake are mainly concentrated. For the 
intermediate ages, the population is still anisotropic, probably because of the general shape of 
the continental shelf, but the anisotropy is less marked. 
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4.5 Global index of collocation: GIC 

Description 
The global index of collocation looks at how geographically distinct two populations are by 
comparing the distance between their CGs and the mean distance between individual fish 
taken at random and independently from each population (Bez and Rivoirard, 2000). 

Stock attribute 
Overlap of two spatial populations. 

Derivation 
Let us consider two populations with densities z1(x) and z2(x) at point x, with CGΔ  being the 
distance between their centers of gravity and 

1z
I and 

2zI , their respective inertias ( 
 
Figure 4.5.1). Then the mean square distance between individuals taken at random and 
independently from each population is 

1 2

2
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or 1 if 

1 2

2 0Z ZCG I IΔ = = = . The spatial index ranges between 0, in the extreme case where 
each population is concentrated on a single but different location (inertia = 0), and 1, where 
the two CGs coincide. 
 

 
 
 
Figure 4.5.1. Collocation of two spatial populations, represented by two ellipses showing their center of gravity 

and their inertia, is measured with the GIC through specific distances. 

Reference points 
GIC between acceptable states of the populations. 

Interpretability 
Collocation is considered here in a global meaning, the populations being, grossly, in the 
same place. This is not to say that the two populations are present at the same locations. A 
spatial population that would be distributed all around a first one, with the same CG, would 
give a GIC equal to 1, even if not overlapping the first population.  
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Local overlapping between two populations would rather be addressed using the local index 
of collocation, that is, the noncentered correlation between their fish densities. 

Measurability 
Alternative indices, also between 0 and 1, may be sqrt(GIC) for collocation, or sqrt(1-GIC) 
for separation (ratio between distance between the CGs and distance between individuals 
from the two populations). 

Sensitivity 
Unusually high GIC requires inspection of the fish density data. 

Examples 
In Bez and Rivoirard, 2000, global and local collocation indices have been measured on 
pelagic species in the Bay of Biscay. Local collocation appears very small between mackerel 
and the other species (anchovy, sardine and horse mackerel).  In Woillez et al., 2007, GIC is 
used to detect outliers in the age time series of the hake population in the Bay of Biscay. The 
year 2000 appears to be particular for age 0. 

References 
See the main references of the topics about the spatial indicators. 
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4.6 Number of spatial patches: NOP 

Description 
A spatial population of fish may be distributed into several spatial patches, with size much 
larger than a fish school. An algorithm has been written to identify patches (Woillez et al., 
2007) by attributing each sample to the nearest patch, with respect to a maximal threshold 
distance to its CG. The Number of Patches then includes all patches that include more than a 
given part (e.g. 10%) of the total abundance. 

Stock attribute 
Patchiness. 

Derivation 
The algorithm starts from the value displaying the maximum density z(x), and considers 
every other sample in decreasing order of density (Figure 2.6.1). The maximum value 
initiates the first patch (1). Then, the current sample value is attributed to the nearest patch, if 
the distance to its CG is smaller than the threshold distance dlim (2). Otherwise, the current 
sample value defines a new patch (3). Spatial patches whose abundance is >10% of overall 
abundance are retained (N). The summary index is then the number of patches. 
 
 

 
 
 

Figure 2.6.1. Main steps of the algorithm used to determine the number of patches of a spatial population. 

Reference points 
Number of patches during a period of acceptable state of the population. 

Interpretability 
The identification of patches is dependent on the threshold distance, typically some fraction 
of the diameter of the sampled domain, chosen by the user. 

Measurability 
The Number of patches is very sensitive to the location of the highest fish density values, but 
this makes sense. 
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Sensitivity 
In a series, the location of patches is likely to present some stability. Hence a change in the 
number of patches is likely to reveal the disappearance, or the appearance of fish in some 
areas. 

Examples 
In Woillez et al., 2007, the Number of Patches have been illustrated on the hake population 
in the Bay of Biscay. According to ages, it increases slightly up to age 3 then decreases. 
Disappearance of patches has been observed and localised for age 0 hake, in particular for the 
year 2000.  

References 
See the main references of the topics about the spatial indicators. 
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4.7 Positive area: PA 

Description 
The positive area is the measure, in square nautical miles, of the space occupied by fish 
densities strictly above zero (Woillez et al., 2007). 

Stock attribute 
Area of presence, in square nautical miles, occupied by the stock, even with a low density. 

Derivation 
The positive area is estimated from data as the sum of the areas of influence around samples 
where there are fish densities >0 (Fig. 4.7.1): 
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Figure 4.7.1. Bubble plot of the sample values and corresponding positive area shaded in red (with a limit to the 
area of influence of each sample). 

Reference points 
Positive Area during a period of acceptable state of the population.  

Interpretability 
The positive area measures the area of effective presence, in square nautical miles. It does 
not include zero density areas possibly existing between positive density areas, and it may 
correspond to a small fraction of the geographical envelope of fish presence, in particular 
when the dispersion (inertia) is high. 

Measurability 
Zero values of density make no contribution to the positive area. However, the positive area 
is sensitive to the low values of density, because the contribution of a small density value is 
the same as that of a high density value. 
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Sensitivity 
Changes in the Positive Area may reveal changes in the way the population occupies the 
space, including the small fish density values that are usually numerous even though they 
contribute poorly to the global abundance. 

Examples 
In Woillez et al., 2007, Positive Area of the hake population in the Bay of Biscay was 
relatively stable until age 3 then dropped. It was shown also that whereas Positive Area 
decreased with age, inertia increased with age, the older hake occupying a smaller but more 
dispersed area. 

References 
See the main references of the topics about the spatial indicators. 
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4.8 Spreading area: SA 

Description 
The spreading area is a measure, in square nautical miles, of how the population is 
distributed in space, taking into account the variations in fish density (Woillez et al., 2007). 

Stock attribute 
A measure of the area occupied by the stock, based on how the abundance is spreading in 
space. 

Derivation 
Let T be the cumulative area occupied by the density values, ranked in decreasing order; let 
Q(T) be the corresponding cumulative abundance, and Q be the overall abundance. The SA 
(expressed in square nautical miles) is then simply defined as twice the area below the curve 
expressing (Q–Q(T))/Q as a function of T (Fig. 4.8.1): 
 

T
Q

TQQ d)(2SA ∫
−

=  

 
As (Q– Q(T))/Q decreases from 1 to 0 and is convex, the SA is less than the PA. It equals the 
PA when the population is evenly spread with a constant density. 
 
 

 
 
 

Figure 4.8.1. SA is defined as twice the area below the curve expressing (Q-Q(T))/Q as a function of T. 

 
The curve above is a derivation of the Lorenz curve representing the histogram of fish 
density values, but having the advantage of receiving no contribution from zero density 
values. The spreading area can be related to the area occupied by the positive fish density 
values and their Gini index of dispersion G0 through 0 1SA G

PA
+ =  (Woillez et al. 2007). 
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Reference points 
Spreading Area during a period of acceptable state of the population.  

Interpretability 
A spatial abundance is generally distributed in space into highly varying fish density values,  
spreading over its positive area. The spreading area index has been designed to describe this 
spreading, or equivalently the lack of aggregation or variation, while satisfying the condition 
of having no contribution from zero density values. Despite its name, the spreading area 
depends exclusively on the amount and histogram of positive fish density values. 

Measurability 
Zero values of density make no contribution to the spreading area. The spreading area 
depends on the variation in density values (and not on the absolute abundance) and is much 
less sensitive to low values of density than the positive area. 

Sensitivity 
Changes in SA are likely to reveal changes in the way the abundance is split into low and 
high density values. 

Examples 
In Woillez et al., 2007, the hake population of the Bay of Biscay has been described through 
the SA. This showed a better spread of the 3 year-old hake. In addition, a decrease of SA 
through the time series was detected for hake age 4 and 5+.  
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4.9 Equivalent area: EA 

Description 
The Equivalent Area represents the area, in square nautical miles, that would be covered by 
the population if all individuals had the same density, equal to the mean density per 
individual (Bez and Rivoirard, 2001). 

Stock attribute 
An individual-based measure of the area occupied by the stock, in square nautical miles. 

Derivation 
The transitive geostatistical approach (Matheron, 1971) can be used to describe the spatial 
distribution of a fish population when it includes a few large values of density, and when it is 
difficult to delimit a domain with homogeneous variations. The spatial structure is then 
represented by a (transitive) covariogram, a function of the distance between two locations: 
 

∫ += hhxzxzhg )d()()( . 
 
Here, the equivalent area (EA) is defined as the integral range of the covariogram: 
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It can also be written: 
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It represents the area that would be covered by the population if all individuals had the same 
density, equal to the mean density per individual (the denominator in the previous equation 
(Fig. 4.9.1)). 
 

 
Figure 4.9.1. The probability density function for a random individual to be at x is given by z(x)/Q. 
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Practically, in the discrete case with sample values zi and areas of influence si, it gives:  
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The EA ranges from 0 to the PA. It would be equal to the PA if all strictly positive values of 
density were the same. The EA can be related to the area occupied by the positive fish 
density values and their coefficient of variation CV0 through 2

01PA CV
EA

= + . The EA and SA 

are related through inequalities, in particular 9
8

EA SA≤  (Woillez et al. 2007). 

Reference points 
Equivalent Area during a period of acceptable state of the population.  

Interpretability 
The positive area describes the area of presence of fish, with a low density value being 
equivalent to a high one. The spreading area describes the area occupied by the stock, taking 
into account the variations in fish density. Now, the equivalent area is still another way to do 
this, while being individual-based (it gives the same weight to each individual, that is, the 
weight of a sample is proportional to its fish density). Just like the spreading area, the 
equivalent area depends exclusively on the amount and histogram of positive fish density 
values. 

Measurability 
The equivalent area is independent of the absolute abundance. Being individual-based, it is 
very sensitive to the highest density values.  The inverse of the equivalent area can be 
considered as an index of aggregation (Bez and Rivoirard, 2001). 

Sensitivity 
Changes in EA are likely to reveal changes in the contribution of high density values to the 
total abundance. 

Examples 
In Woillez et al., 2007, the Equivalent Area on the hake population of the Bay of Biscay was 
shown to be larger for hake aged 3 years.  



 

 65

4.10 Microstructure index: MI 

Description 
The Microstructure Index (Woillez et al., 2007) measures the relative importance of 
structural components having a scale smaller than the sample lag (including random noise). 

Stock attribute 
The fine-scale variability of the fish density surface. 

Derivation 
The microstructure index (MI) is taken as the relative decrease of the transitive covariogram 
(Matheron, 1971; Bez et al., 1997) between distance zero and a distance h0 chosen to 
represent the mean lag between samples (Fig. 4.10.1): 
 

( (0) ( 0))
(0)

g g hMI
g
−

=  

 
It lies between 0 and 1. Values close to 0 correspond to a very regular, well-structured 
density surface, and values close to 1 correspond to a highly irregular, poorly structured, 
density surface. 
 
 

 
 

Figure 4.10.1. Real (dashed line), experimental (blue points) and modelled covariogram (red line) with the 
representation of the microstructure index. 

Reference points 
Microstructure Index during a period of acceptable state of the population.  

Interpretability 
The Microstructure Index does not make the distinction between spatial variability with a 
range less than the chosen lag but positive, and purely random variability (e.g. due to noise or 
sampling error). 
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Measurability 
The Microstructure Index, as obtained from the transitive covariogram, is very sensitive to 
high fish density values (but it is more robust than its equivalent feature that would be 
obtained from the more traditional variogram or covariance). 

Sensitivity 
A high Microstructure Index is likely to correspond to fine-scale aggregations. 

Examples 
In Woillez et al., 2007, Microstructure Index has been followed through age and time on the 
hake population in the Bay of Biscay. It showed a relative stability for the younger ages, then 
it rose markedly from age 4. 
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5. Methods 

5.1 Introduction 
The following methods for integrating and interpreting time-series of indicators as estimated 
from research vessel surveys were developed and discussed during the FISBOAT project.  In 
general, they attempt to ease the problem of deciding whether an indicator or a suite of 
indicators is signalling, or will signal, a change in the state of a fish stock that calls for an 
adjustment to the controls on a fishery.  
 
Section 5.2 by Lembo et al. presents an age-length based simulation model, Aladym, for 
predicting the effects of different fishing pressures on a single population of fish.  Section 
5.3, also by Lembo et al. describes how a Monte Carlo approach can be used with Aladym in 
order to help create reference points for selected indicators. 
 
Section 5.4 by Trenkel et al. points out the importance of relating current trends in indicator 
values with a previous reference period when indicator values were agreed to be either 
satisfactory or not.  They offer a simple system for integrating different types of biological 
and fishery information provided by indicator time series, and by other sources if available, 
in a way that can be discussed by stock managers, stake-holders, and scientists in order to 
decide what, if any, measures should be taken to control the fishery.  This would often form 
part of an adaptive management scheme. 
 
Mesnil and Petitgas, section 5.5, describe how the quality control schemes that originated in 
manufacturing industry can be adapted to monitor fishery and environmental qualities 
derived from time series of indicators.  The CUSUM control-chart method offers 
considerable potential for rapid detection of changes of state. 
 
Bogaards et al., section 5.6, describe a simple, hypothesis-testing approach for  deciding how 
long will be needed before an indicator series is expected to reveal a given linear trend.  This 
could be helpful for deciding whether a survey is sufficiently sensitive to detect a response to 
new controls on a fishery within a reasonable time frame. 
 
In section 5.7, Trenkel proposes a GAM and bootstrap-based solution for the long standing 
problem of deciding whether recent changes in an important time-series represent a valid 
signal, or just sampling noise.  Such methods can greatly assist the provision of rapid, 
confident advice for managing a fishery. 
 
In sections 5.8 and 5.9, Petitgas describes and illustrates two complementary approaches to 
making a single assessment from multiple time-series of indicators.  In the first part, the well-
known 'traffic light' method is set out.  In the second, multivariate methods based on 
principal components and multi-factorial analysis (MFA) are described and illustrated with 
an example.  The multivariate analysis is likely to provide complementary interpretation of 
results in the traffic light table. 
 
Petitgas and Poulard in section 5.10 describe a multivariate statistical method for visualising 
groupings of indicator variables in space and time.  They applied this method during the 
FISBOAT project to examine the changing spatial distributions of fish with age, as signalled 
by the spatial indicators described in the first part of this manual. 



 

 69

 
In section 5.12, Woillez and Rivoirard describe a multivariate statistical method applicable to 
parallel time series of values for many indicators when continuity of some trend in time is of 
interest, possibly in relation to a study of cause and effect.  MAFs are linear combinations of 
variables that are conceptually similar to principal components (PCs) but, whereas a fitted 
series of PCs explains independent components of variance the magnitude of which 
decreases from first to last, a series of MAFs explains independent components of 
autocorrelation, the first of which displays the highest, and the last of which displays the 
lowest autocorrelation at lag 1 observation in the time series. Thus MAFs offer a way of 
finding the combination of variables that present maximal continuity in time. 
 
Finally, in section 5.13, Cotter reviews and illustrates with example analyses a collection of 
nonparametric statistical methods that allow assessment of indicator trends whilst avoiding 
the assumptions and other uncertainties of modelling.  Suggestions are made for improving 
the objectivity of statistical inference. 
 
Several of the methods use especially written software.  The FISBOAT project team agreed 
at the outset to use the R programming language because it is freely available from 
http://www.r-project.org/, it is highly versatile and because, by doing so, the portability of 
software and ideas is maximised.  The software can be downloaded freely from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm.  Data sets and spreadsheets referred to in 
the following sections should also be available from this site. 
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5.2 Simulating population dynamics.   

5.2.1 ALADYM(v 08) 
Lembo G., A. Abella, F. Fiorentino, S. Martino and M.T. Spedicato 
COISPA Tecnologia & Ricerca, Bari, Italy 

Introduction 
ALADYM (Age-Length Based Dynamic Model) is an age-length based simulation model 
developed within the conceptual framework of dynamic pool models, following the 
predictive Thompson & Bell (1934) approach.  The model is designed to predict, through 
simulations, the effects of different fishing pressure scenarios on a single population, in terms 
of different metrics and indicators. Removals are simulated on the basis of the total mortality 
rate modulated using harvesting pattern and a fishing activity coefficient. Aladym can work 
in absence of fishery-dependent data, although its predictive capability of real catch levels 
can be verified using information on commercial catches or fishing activity per month. 
 
From the Aladym core model three complementary, but independent, tools have been 
derived:  
• the quasi-deterministic dynamic tool named Aladym-r; 
• the tuning tool Aladym-z; 
• the stochastic dynamic tool named Aladym-q.  
The core Aladym model is described in this chapter together with Aladym-r and Aladym–z, 
while Aladym-q is described in the following one.  

General assumptions 
The basic assumptions of the model are: 
• natural mortality as estimated reflects the rate of decline of a population from all causes 

excluding fishing; 
• total mortality Z reliably reflects the decline of ages/sizes in the population, including the 

effects of different fishing gears; 
• the growth, the natural mortality, and the maturity parameters are assumed constant over  

time; 
• given the small time interval (1 month) between cohorts the effect of the spreading of the 

lengths with respect to the ages can be neglected. 

Derivations 

The quasi-deterministic dynamic tool named Aladym-r 

General framework 
The model is designed to simulate population dynamics of a given species accounting for 
differences by sex in growth, maturity and mortality. All the quantities are calculated as 
vectors with a time step Δt (time slice=1 month).  An operational framework of the Aladym-r 
model is shown in fig. 5.2.1. Step A) regards the input and initialization. In order to generate 
an unbiased initial population, the number of runs specified by the user (e.g. 100) is 
performed in this step, randomly varying the recruitment, the growth and the size-at-maturity 
parameters according to the values and distributions specified by the user. The user can 
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choose among the following distribution type: log-normal, normal, gamma and uniform.  For 
the parameter t0 a uniform distribution is associated by default.  Two populations are 
generated: the exploited (where total mortality is acting) and the unexploited one (where 
natural mortality only is acting).  
 
The obtained initial populations enter in the start loop (or seed run) (step B in fig. 5.2.1), 
where the dynamics are formulated to follow the evolution of several cohorts over a monthly 
scale. Here the number of recruits entering in the population is generated from a stock-
recruitment relationship. Alternatively, it is given as an input vector. In both cases, a uniform 
variability for the obtained number of recruits can be set by the user. The start loop runs for a 
number of years that is a multiple of the two sex life-spans. This step aims to eliminate the 
artefacts in the initial population due to the use of an equilibrium model in the initialization 
step. After this phase, the simulation loop starts and runs over the period required by the user 
(step C in fig. 5.2.1) generating the outputs (step D in fig. 5.2.1).  

Model components 

Growth 
The growth process is modelled using a von Bertalanffy growth function: 
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For each age (time step Δt = 1 month) length is calculated using the input parameters L∞, K 
and t0. The average length in the time interval (t, t+∆t) is calculated as: 
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The weight at average length, for each age, is calculated from the length-weight relationship 
in the form: b

ageage LaW = ; with a and b as input parameters. 

Population 
The population dynamics is formulated following the simultaneous evolution of several 
cohorts at monthly scale through the exponential population decline model, both in absence 
(1) and in presence (2) of fishing mortality: 
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where j indicates the cohort, t the time, Z, M and F the total, natural and fishing mortality 
respectively. (Notice that in any formula where j, age and t are present, it is assumed that age 
represents the age of the cohort j at time t). 

Maturity 
Maturity Mat is a function of the length L and is calculated following an ogive model (Quinn 
and Deriso, 1999):  
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where r is the ogive slope and Lm50% is the length at which 50% of fish mature. 
The proportion of mature fish at age is computed as: 
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where the maturity range Lm75%-Lm25%, is related to the ogive slope. 

Biomass 
The biomass (Bj) and the spawning stock biomass (SSBj) of the cohort j at time t are 
respectively computed as: 
 

agejtjt wNB ⋅= ,, ; 

ageagejtjt MatwNSSB ⋅⋅= ,,  

 
Analogously, the unexploited biomass (UBj) and the unexploited spawning stock biomass 
(USSBj) of the cohort j at time t are calculated as: 
 

agejtjt wUNUB ⋅= ,, ; 

ageagejtjt MatwUNUSSB ⋅⋅= ,,  

 

Initial recruitment and stock recruitment relationship 
During the step A) (fig. 5.2.1) the initial number of individuals in the population are from 
estimates of recruitment independently obtained from e.g. trawl surveys or other sources.  
These numbers randomly selected for each of the e.g. 100 runs (see also the general 
framework paragraph) are used to initialize the population. Successively (step B and C in fig. 
5.2.1), the number of individuals entering in the population can be a vector or is estimated 
from one of the following user selected stock-recruitment relationships:  
 
Beverton & Holt (1957):  
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Ricker (1954):  
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Shepherd (1982): 
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Barrowman & Myers (2000): 
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R and S represent the number of recruits and spawners respectively, whilst a, b, c, 

*,, Sδα are the model’s parameters. Uniformly distributed random variations can be applied 
by the user to the number of offspring (from the vector or stock-recruitment relationship). 
 
The number of the events (on monthly basis) generating the offspring is an input of the 
model.  The population of spawners generating the recruits is calculated by summing up the 
number of individuals of the different age classes of the different cohorts occurring in the 
population one or more (depending on the biological features of the species) months before 
the offsprings are produced. Thus this quantity is calculated as follows: 
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; 

where jtSSN ,  represents the number of mature females at time t, of the cohort j: 

agejtjt MatNSSN ⋅= ,, . 

Mortality 
The natural mortality can be constant for each age/length, or a vector by age/length 
calculated outside the model and used as input. Alternatively, it is estimated inside the model 
from the Chen and Watanabe equations (1989):  
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The two parameters of the Chen and Watanabe model are t0 and K. The asymptotic length 
(L∞) is not necessary, but t0 cannot be equal to 0 (otherwise the parameter tM cannot be 
defined). The quantities a0, a1, a2 and tM cannot be strictly considered as parameters of the 
model, as they depend on t0 and K. The parameter tM represents the age beyond which the 
contribution of the fish of a given cohort can be considered negligible. If parameters are 
consistent the relationship between age and natural mortality shows a “bath tube” shape. 
 
The fishing mortality rate F(L) is modelled for each cohort using the following general 
equation (Sparre and Venema, 1998): 
 

)()( LSFLF axm ⋅=  
 
where Fmax is the maximum fishing mortality and )(LS  the proportion of retained fish.  In 
Aladym the fishing mortality rate is calculated as  
 

actaxm fLSFLF ⋅⋅= )()(  
 
where maximum fishing mortality (Fmax) is calculated as 
 

minMQZF inputaxm −=  
 
using the input values of QZ (a Z proxy) and where Mmin represents the minimum value that 
the M vector assumes. As an alternative option, Fmax can also be a user selected input to be 
set for each month. In addition, a fishing activity coefficient (fact) is introduced in order to 
consider the possibility of a fishing ban or changes in fishing effort throughout time. 
The value of QZ by sex can be assumed, as a first order approximation, numerically equal to 
the value of Z observed that is obtained from estimations outside the simulation model (e.g. 
from trawl-survey). A better approximation of QZ is obtained using the tool Aladym-z (see a 
later paragraph). 
 
In the model, the probability of selection )(LS  of the cohort j is calculated at time t from one 
of the two following user-selected relationships: 
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where L50%, L75% and L25% are the selectivity parameters and D50%, D25%, D75% the de-
selection parameters of the model.  The total mortality Z at time t for the cohort j is thus 
computed as 
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jtjtjt MFZ ,,, +=  
 
that is the value acting on the population in the model computations. 
 
The biomass of individuals of the cohort j at time t death for all causes (BPt,j) is computed as 
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while the biomass of those dead from all causes excluding fishing (BNDt,j) is computed as 
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Harvest control rules 
The simulation approach can be used as a tool to convert survey biological information and 
relative assessment into quantitative HCRs. The options implemented in the simulation 
model are based on the following aspects: QZ, gear selectivity (size at first capture L50% and 
selection range) and fishing activity (alone or in combination). These three are inputs that can 
be used to simulate different exploitation scenarios. The effects of HCRs (selectivity and 
fishing activity) are then analysed in terms of the sustainability of the population in the long-
term. For example, the ratio between the mean spawning stock biomass and the mean 
unexploited spawning stock biomass (SSB/USSB, output) is also estimated for each 
harvesting scenario.  
 
A vector of yield (Y) by time is also simulated, estimating the catch (C) according to the 
following general equation (Gulland, 1969): 
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where tΔ  is the time to which the catch is referred.  Thus the catch (Yield) in the time 
interval (t, t+∆t) is computed in Aladym as (Sparre and Venema, 1998): 
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Software 
Aladym is written in the R language and licensed as open source under GPL2.  The data and 
parameters feeding the model can be easily entered using an excel data sheet. The results of 
the simulation are stored into three Export files (.din for inputs, .dou for outputs, .RData for 
the R workspace) and saved in the same directory where R is started using the basename of 
the input sheet.  
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To give an idea of the running time, Aladym-r requires about 25 seconds (assuming 40 years 
of start loop and 20 years of simulation) with a Intel (R) Pentium (R) personal computer with 
a processor of 1.70 GHz and 1 GB RAM.  The tool Aladym-z requires about 2.6 hours 
(assuming 40 years of start loop and 20 years of simulation) with the same computer.  The 
software can be downloaded from the Fisboat web-site, where also a detailed description of 
the input sheet for user help is available. 

Inputs  
Input parameters to the Aladym-r model are:  
• von Bertalanffy growth parameters by sex with associated variability,  
• length-weight relationship parameters by sex; 
• maturity ogive parameters by sex (Lm50% and Lm25%-Lm75% range); 
• natural mortality by sex (a constant value or a vector); 
• seed values (minimum, maximum, ln-mean and ln-standard deviation) of recruitment by 

sex;  
• proportion of offsprings entering in the stock by month;  
• stock-recruitment relationship parameters or a vector of recruit numbers by month both 

with associated variability; 
• time elapsing from spawning to birth;  
• sex-ratio (female/total) of offsprings; 
• Fmax by month (option 2) or from the model (option 1);  
• QZ by sex;  
• selection ogive parameters (2 options) of the gear used by the fleet (L50% and L25%-L75% 

range, D50% in case of the selectivity option 2);  
• fishing activity coefficient by month (0, in case of absence of fishing activity). 
 

Outputs  
The outputs automatically produced by the simulations of Aladym-r can be summarised in 
the following items: 
• Export data file (.dou): 
• exploited and unexploited population by sex, per month and age; 
• exploited and unexploited biomass by sex, per month and age; 
• exploited and unexploited population of females belonging to the spawning stock per 

month; 
• total mortality Z calculated by the model for females, males and the whole population in 

each month and year of the simulation as follows (Sinclair, 2001): 

• 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

∑

∑
∞

=
+

∞

=

2
,

1
,

ln1

j
jtt

j
jt

t

N

N

t
Z

Δ
Δ

; 

• exploited and unexploited biomass per month; 
• exploited and unexploited spawning stock biomass per month; 
• ratio between exploited and the unexploited spawning stock biomass per month; 
• average length and age of exploited and unexploited populations per month; 
• average length and age of exploited and unexploited spawning populations per month; 
• yield in tonnes per month; 
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• average length and age of catches per month; 
• fishing mortality per month calculated as; 
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where F
jttN ,Δ+  is the number of survivors at the time t+Δt under the hypothesis that only 

fishing mortality is acting; 
• biomass of natural losses and total biological production per month. 
 
Plots per year of the outputs listed from items 4 to 13 are also produced.  Some other outputs 
are also made available to the user: 
• average length at age and age by sex; 
• natural mortality at age/length by sex; 
• weight at age/length by sex; 
• proportion of mature individuals at age/length by sex. 
These outputs help the user to check the results obtained from the sub-models, in particular 
those related to the VBGF, the length-weight relationship, the natural mortality, and the 
maturity.  

Practical guidelines 
The Aladym core model does not make any fixed or hidden (from the user) assumption about 
the values of the parameters describing the behaviour of the equations on which the model 
itself is built.  The user is allowed to (and needs to) input all the parameters involved: whilst 
this makes the model highly flexible in adapting to different species/environments it loads 
the user with the responsibility to validate each single value and to assess the coherence as a 
whole.  Very few checks are foreseen at the moment to supervise the consistency of the data 
supplied: often it is a critical analysis of the results which spots such consistency. The checks 
guarantee the positivity of Fmax, of length at t0 and a sex ratio between 0 and 1. 
 
The model is extensively based on a closed form solution to the dynamical equations it 
solves.  Thus two key options, both related to the early phase, are available for tuning: the 
‘Multiplier of Life-span’ which controls the amount of years that must be simulated in order 
to cancel the artefacts from the equilibrium model used to initialise the population; and the 
‘Number of Run for seed randomization’ which sets the number of samples to be taken in 
order to derive the average values for the growth and population parameters. For both 
parameters the rule is: bigger is better, however the default values (1, 100) are a reasonable 
choice. 
 
One of the parameters highly influencing the behaviour of the model is QZ which, however, 
does not have an immediate counterpart but can be naively associated to the total mortality Z. 
A specific tool (Aladym-z) has been developed which, starting from the observed values of Z 
and the description of the life and population traits, is able to calculate values of QZ which 
better approximate the given scenario.  Starting from the Z_observed, Aladym-z iterates the 
model modifying, in each run, the amplitudes of the QZ waveforms.  It stops when the Least 
Square convergence criteria are met. 
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Sensitivity 
The extensive number of simulation runs performed has shown that the model behaviour is 
influenced by the consistency between the set of life-history parameters and the population 
dynamics. The model results are thus expected to be particularly sensitive to the stock-
recruitment relationship and natural mortality.  

Strengths/weaknesses 
In Aladym the following points can be considered the strengths: 
• the model is designed to work in the absence of fishery-dependent information; 
• the model is built using separated components that give it enough flexibility to account 

for the use of different equations; 
• the model allows the population dynamics to evolve in a very detailed time scale, thus 

permitting analysis of fluctuations within the year; 
• the detailed time scale allows modelling the effects of the harvest control over the year; 
• the model allows input of natural mortality varying by age/length, and is thus able to 

allow for species exploited at an early phase. 
 
The following points can be considered as the weak ones: 
• the model does not account for environmental changes, such as those related for example 

to temperature variations, or food availability; 
• the life-history traits that are used for modelling the population dynamics (e.g. growth, 

natural mortality, maturity) are assumed stable along the time and not to be density 
dependent; only direct effects of the fishery on the population are considered;  

• the model does not include components of spatial behaviour; 
• harvesting scenarios based on the control of the total catches are not foreseen; 
• the user should be aware of the range of validity of the sub-model parameters such as 

those related to the stock-recruitment relationships. 
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Figure 5.2.1.  Scheme of the Aladym-r tool. R=recruitment; w=individual weight; Sel=selectivity; 
Mat=maturity; M=natural mortality; F=fishing mortality, Z=total mortality; N=exploited population, 

UN=unexploited population, B=exploited biomass, SSB=exploited spawning stock biomass, UB=unexploited 
biomass, USSB=unexploited spawning stock biomass, S-R=stock-recruitment relationship, Y=yield, t=time, 

j=cohort. 
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5.2.2 Estimating indicators and reference points 
Lembo G., A. Abella, F. Fiorentino, S. Martino, and M.T. Spedicato 
COISPA Tecnologia & Ricerca, Bari, Italy 

Introduction 
Aladym-q adds to the same mathematical model of Aladym-r the capability to deal with the 
stochastic representation of some input parameters, in order to evaluate the corresponding 
distribution functions of the output variables using a MonteCarlo approach. This feature aims 
to build a procedure to help identification of indicators and/or reference points, associating a 
confidence interval with them. 

Derivation  

The stochastic dynamic tool Aladym-q 
The stochastic dynamic model defined as Aladym-q follows the same basic formulations as 
Aladym-r. The main difference consists in modelling the uncertainty of estimates related to 
the initial recruitment, growth and maturity traits of the population through stochastic 
processes.  Moreover, a uniform distribution is applied to the number of recruits generated by 
the stock-recruitment relationship. In addition, probability distribution functions (pdf) 
selected by the user are applied to the growth parameters K and L∞, and to the maturity 
parameters. This makes Aladym-q more adaptable for estimating the probability associated to 
metrics, indicators and reference points.  
 
An operational framework of the Aladym-q is in fig. 5.3.1. The step AA) concerns the input 
and initialization. Given the parameters of the identified pdfs a first random realization is 
made in this step. Then the population evolves in the steps BB) and CC). These steps are 
reiterated for a number of realizations, sampling at each run a new set of parameters from the 
pdfs. In the output step pdfs and cumulative pdfs are generated, the latter calculated according 
the following general formulation: 

( ) χχ dpdfxXPXf
x

∫
∞−

=<= )()(  

Software 
Aladym is written in the R language and licensed as open source under GPL2. The data and 
parameters feeding the model can be easily entered using the same excel data input sheet as 
Aladym-r. The differences regard the number of realizations to be performed (user selected 
and mandatory for Aladym-q) and the parameters of the pdfs associated with growth and 
maturity, that for Aladym-q operate also in the simulation loop.  The results of the simulation 
are stored into three Export files (.din for inputs, .dou for outputs, .RData for the R 
workspace) and saved in the same directory where R is started using the basename of the 
input sheet.  
 
To give an idea of the running time, using a Intel (R) Pentium (R) personal computer with a 
processor of 1.70 GHz and 1 GB RAM, Aladym-q might requires 572 seconds for 100 
realizations, ∼1.5 hours for 1000 realizations and about 17 hours for 10000 realizations 
(assuming 40 years of start loop and 20 years of simulation).  The software can be 
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downloaded from the Fisboat web-site, where also a detailed description of the input sheet 
for user help is available. 

Inputs  
As regards the inputs, besides those already mentioned for Aladym-r, Aladym-q requires: 

• the number of realizations;  
• the parameters of the pdfs. 

Outputs 
The outputs automatically produced by the simulations of Aladym-q can be summarised in 
the following items: 
• Export data file (the quantities are related to each realization): 

1. exploited and unexploited biomass in tons per month; 
2. exploited and unexploited biomass of spawners in tons per month; 
3. ratio between exploited and unexploited spawning stock biomass per month; 
4. Z calculated by the model combined for sex per month and by sex per year; 
5. QZ (the input values) by sex; 
6. average length and age of exploited and unexploited populations per month; 
7. average length and age of exploited and unexploited spawner populations per month; 
8. F per month; 
9. yield in tons per month; 
10. average length and age of the catches per month; 
11. biomass of natural losses and total biological production in tons per month. 

• Plots of the pdfs and the cumulative (cpdfs) are interactively produced per year for the 
same items listed above.   

• Some other outputs are also made available to the user: 
12. average number of recruits at each realization;  
13. growth and maturity parameters by sex at each realization. 

 
These outputs help the user to check the results from the sub-models related to the VBGF, 
the maturity, and the recruitment. In addition, they also allow the outputs at each realization 
to be tracked with the related key-inputs.  
 

Practical guidelines 
The same considerations that were developed for Aladym-r hold for Aladym-q.  A new 
parameter is introduced for tuning the quality of the output pdfs: the number of realizations. 
This parameter should be set so as to account for a trade-off between the running time and 
the target confidence level. Experiments showed that values in the range from 1000 to 10000 
give an error level varying from about 6-7 to ∼1%. These confidence levels are well below 
the precision by which most of the input parameters are known. 
 
As regards sensitivity and the strengths/weaknesses of the models, similar consideration as 
were developed for Aladym-r can be applied to Aladym-q, although the latter tool has the 
advantage of including stochastic effects in some of the key life-history traits. This 
stochasticity masks the effects due to uncertainty on the knowledge of input data and of their 
relationships. 
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Figure 5.3.1. Scheme of the Aladym-q tool. pdf=probability distribution function; K, L∞ growth parameters, 
R=recruitment; w=individual weight; Sel=selectivity; Mat=maturity; M=natural mortality; F=fishing mortality, 
Z=total mortality; N=exploited population, UN=unexploited population, B=exploited biomass, SSB=exploited 
spawning stock biomass, UB=unexploited biomass, USSB=unexploited spawning stock biomass, S-R=stock-

recruitment relationship; lengthaverage=L ; ageaverage=ega ; SS=exploited spawner’s population; 
USS=unexploited spawner’s population; C=capture in numbers; Y=yield, t=time, j=cohort.  
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5.3 Indicator time-series methods.  

5.3.1 Nonparametric method for determining recent trends 
Verena Trenkel  
Ifremer, Nantes, France 

Introduction 
The most commonly used method for determining the direction of changes in estimated 
indicator time series is fitting linear models and then using the sign of the slope if it is 
significantly different from zero  ((e.g.Trenkel and Rochet 2003). This method is reliable for 
determining long term time trends. However, it is less satisfactory for short term time trends. 
Trends might not be linear and inter-annual variability in estimated indicators can be strong 
enough to mask short term changes. Furthermore, if only the trend over the most recent years 
is considered, the overall evolution is not taken into account, for example whether the 
indicator values are among the lowest or highest of the available series or whether the 
indicator has a tendency to fluctuate randomly with a certain phase. Consider the fluctuations 
of plaice ln-abundance estimated for the Southern North Sea (Fig. 5.7.1, left panel). The 
population seems to have been fluctuating randomly over the course of the 23 years. So 
looking at this picture one would probably conclude that the recent years are not any 
different from the whole time series. However, depending on how many recent years are used 
for estimating a linear trend, a positive, negative or no trend will be found. Similarly for dab, 
although ln-abundance has been decreasing in the most recent years, overall the population 
levels remain well above that at the beginning of the series. So, it seems desirable to include 
the whole time series in the assessment of the dynamics of the most recent years.  
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Figure 5.7.1. Time series of ln-abundance for plaice and dab in Southern North Sea based on IBTS data. The 

continuous line is generalised additive model (GAM) fit. The broken lines are 95% confidence bands for this fit 
based on a parametric bootstrap of annual indicator estimators. 

 
 
In this document a method is proposed to estimate the direction of recent changes making use 
of first and second derivatives of smoothed indicator time series and the position of the most 
recent years with respect to the full time series. The first derivative, which is actually the 
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local slope (tangent) at each point of a function, here each year, describes the dynamics of the 
indicator changes. In contrast, the second derivative describes the changes in the slope. A  
positive second derivative indicates that the slope is increasing while a negative second 
derivative means that the slope is decreasing. A location at which the second derivative is 
zero is called a change point as at this point the dynamics change from accelerating to 
decelerating, i.e. the slope gets smaller from this point onwards, or vice versa. The slope will 
be zero when either a maximum or minimum is reached. Figure 5.7.2 illustrates the signs of 
the first and second derivatives. The proposed method is described in details in the next 
section. 
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Figure 5.7.2. Diagram showing the signs of the first and second derivative of an indicator time series used for 

determining the direction of change. 

Method 
The proposed method consists of several steps which are  

1. fit a generalised additive model to the time series in order to obtain a smoothed series; 
2. calculate first and second derivatives for the smoothed time series for all years 

(including years with no data); 
3. determine direction of change in recent years using a combination of criteria for the 

smoothed series as well as the first and second derivatives of the smoothed series. 
 
To obtain smoothed indicator series, generalised additive models (GAM) are fitted with year 
as a cubic regression spline and automatic selection of the degrees of freedom (minimum 3) 
using the mgcv package in R (R development Core Team 2003) developed by Wood (2000). 
 
As spline models are twice differentiable, first and second derivatives of the smooth series 
can be calculated for every year of the time series using an approximation based on first and 
second differences, as used by Fewster et al. (2000).  
 
The first derivative of indicator I in year t is approximated by the first difference 
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The second derivative is approximated by the sixth difference 
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{ })3(2)2(27)1(270)(490)1(270)2(27)3(2180

1)(''ˆ −+−−−+−+++−+= tItItItItItItItI . 

 
For the third (t=3) and two before last years the fourth difference is used to approximate the 
second derivative 
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Finally, for the second (t=2) and one before last the second difference is calculated for the 
estimating the second derivative 
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For obvious reasons the first and second derivatives cannot be estimated for the first and final 
year of the time series. 
 
In order to determine whether the estimated first and second derivatives are significantly 
different from zero for a given year, i.e. 0)('ˆ ≠tI  and 0)(''ˆ ≠tI  for i=1,...T, a parametric 
bootstrap is carried out. For this, indicator time series are created by resampling each data 
point (year) ))(),((~)( ttINtI b σ  from a normal distribution with, as mean, the estimated 
indicator value for year t, I(t) and, as standard deviation, its estimated standard deviation σ(t). 
A separate GAM is then fitted to each bootstrap series I(1)b...I(T)b, b=1,...B, using the same 
degrees of freedom (degree of smoothness) as was found optimal for the original indicator 
time series. Subsequently, for each bootstrap sample, first and second derivatives are 
estimated by year. This provides the distribution of first and second derivatives for each year 
based on which the 2.5 and 97.5 percentiles are calculated. If the value zero is included in the 
interval formed by the 2.5 and 97.5 percentiles, which is actually a 95% confidence interval, 
the derivative of the given year is not significantly different from zero and the indicator 
variable for the derivative is set to zero, otherwise the sign of the derivative is either positive 
(1) or negative (-1) depending on whether the values within the confidence interval are all 
negative or positive. The result of this test is a time series of an indicator variable for the first 
derivative which is either 0, 1 or -1. Similarly for the second derivative. 
 
In order to determine the direction of recent changes in indicator time series, the indicator 
variables with the signs of the first and second derivatives are combined in a decision rule 
(Table 5.7.1). In addition, the location of the minimum and maximum value in the time series 
is used in order to put the most recent years into the perspective of the whole time series. If 
the maximum is not found within the last three years and the annual slopes (first derivative) 
are predominantly negative and annual second derivatives are negative or zero in the last five 
years (no change point appears with sign of second derivative passing from –1 to +1), the 
direction of change is declared as recently decreasing. The second derivative is used to 
establish whether an improvement has already taken place most recently. Similarly for a 
recently increasing series, the minimum should not be within the last three years, the average 
of the annual slopes should be positive (apart from one year) and no change for a decreasing 
trend (sign of second derivatives positive) should have occured during the last five years. For 
all other cases there is no indication for a change. These decision rules are proposed based on 
empirical tests, however they are by no means prescriptive. The important point is the 
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principle, i.e. the combination of different measures of the dynamics of a time series, 
minimum, slope and change points. In particular the time spans considered, which is five 
years for the first and second derivatives and three years for the location of the maximum and 
minimum, are easily adapted for a  particular study. 
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Table 5.7.1. Decision rules used to determine direction of recent changes for an indicator time series based on 
first and second derivatives of smoothed indicator time series.  ym = number of years to consider for 

minimum/maximum; e.g. ym= 3.  yc = number of years to consider for first and second derivatives, e.g. yc= 5 
    

Decrease 
 

Increase 

1. Maximum value before final ym years  
 
AND 
 
2. Signs of annual slopes for final yc  years negative 
or at most 0 for 1 year  
 
AND 
 
3. Sign of annual second derivatives during final yc  
years negative or zero (persistence of decrease)  

1. Minimum value before the final ym years  
 
AND 
 
2. Signs of annual slopes during at least final yc years 
positive or at most 0 for 1 year 
 
AND 
 
3. Sign of annual second derivatives during final yc  
years positive  (persistence of increase) 

 
 
 
For comparison purposes, linear time trends over the whole data series and the last five years 
are also calculated. 

Example: cod in North Sea 
As an example the method was applied to the indicator table for cod in the North Sea based 
on IBTS data. Fig. 5.7.3 gives the smoothed indicator time series. The direction of recent 
change assessed by two methods is indicated in the header of each figure. The proposed 
method is referred to as ‘derivatives’. Thus the diagnosis obtained with the proposed method 
is that ln-abundance and L50 maturity are decreasing, while mean length and the length 
quartiles are all increasing. Thus all signs points towards a deterioration of this cod stock. In 
contrast to the proposed method, linear time trends over the most recent five years were only 
signficant (α=0.05) for the ln-abundance time series.  
 
The total mortality estimates Z and the length quartiles L25 and L75 in Fig. 5.7.3, are varying 
interannually more than seems plausible biologically. As a consequence the smooth function 
fits (cubic splines) might not be considered representative for the temporary evolution of 
these indicators and the resulting diagnoses might be considered unreliable. This example 
points out the need to carefully select the indicators and to evaluate their reliability before 
using them for any assessment purposes because the results obtained with the proposed 
method will entirely depend on the suitability of the GAM fits.  
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Figure 5.7.3. Indicator time series of North Sea cod with cubic spline model. Assessment of recent direction of 
changes in figure headers using the proposed method (‘derivatives’) and linear trend estimation for the final five 

years.  
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Software 
The software for the non-linear estimation procedure based on first and second derivatives 
can be downloaded from http://www.ifremer.fr/drvecohal/fisboat/index.htm.   To run it: 
 

1. Copy the function “FunctionsTimeChangeDerivatives.R” and script 
“ScriptTimeChange.R” into same folder as the data table. 

2. Edit line 10 in script replacing file name,  
e.g. indicest<-read.table("codNS_tab2_wp2A.txt",header=T,sep="\t",as.is=T) 

3. Edit line 28 to select the time horizon for first and second derivatives 
e.g. lastn=5 

4. Edit line 31 for time horizon for maximum and minimum values 
e.g. lastnmin=3 

5. Run edited script. 
6. Results are obtained as a table called Trendestimates.txt and as smoothed time series 

plots for each indicator 

Example results for North sea cod 
 
1. Trendestimates.txt 
 
Area Species Indicator LinearSlop

e 
PvalueAll LinSlope

LastYear
s 

PvalueLast DiagnosL
inearRec
ent 

Diagn
osNo
nLine
arRec
ent 

NorthSea GADUMOR ln_survey_index -0.067 0.00014 -0.219 0.04792 -1 -1 
NorthSea GADUMOR Lbar 0.101 0.61485 0.996 0.47505 0 1 
NorthSea GADUMOR L25 0.051 0.80099 -1.09 0.51169 0 1 
NorthSea GADUMOR L75 0.161 0.55643 2.73 0.13226 0 1 
NorthSea GADUMOR L50.maturity -1.525 0 -3.657 0.06658 0 -1 
 
Explanation of column names: 
LinearSlope: Linear slope over whole time series 
PvalueAll: p-value for linear slope over whole time series 
LinSlopeLastYears: Linear slope for most recent years  
PvalueLast: p-value for above linear slope 
DiagnosLinearRecent: sign of slope for most recent years if significant (p-value <=0.05) 
DiagnosNonLinearRecent: direction of change using proposed method (decrease =-1, 
increase=1, no change =0) 
 
2. Figures  
e.g. ln survey index.wmf (fig. 5.7.4). 
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Figure 5.7.4.  Ln-transformed survey time series with fitted smoothed model (GAM). Header provides direction 
of changes as found by fitting a linear slope over the 5 most recent years, and by the proposed method, referred 

to as ‘derivatives’. This information is repeated in the table. 
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5.3.2 Assessing the power to detect future trends 
Hans Bogaards, Charlotte Deerenberg, Gerjan Piet 
Wageningen Institute for Marine Resources and Ecosystem Studies 
IJmuiden, The Netherlands 
 

Introduction 
An assessment of the power of a survey to detect future trends in candidate indicators is 
obviously an important task before those indicators are selected for use in some kind of 
fishery management programme. Formally, the power of a statistical test is the probability of 
not making a type II error, where a type II error is defined as accepting the null hypothesis 
when the alternative is true. Within the context of a monitoring program, power can be 
interpreted as the probability that a particular trend change will be detected.  This note 
describes a method for estimating the power of a survey to detect future, linear trends given 
standard modelling assumptions.  Software in R available from the FISBOAT website is also 
described. 

Method 
Power calculation first requires a specification of the testing procedure to be used, together 
with the significance level α (the probability of making a type I error: rejecting the null 
hypothesis when it is true) of the test. Furthermore, it requires the definition of a null 
hypothesis H0 and an alternative hypothesis H1. 
 
To provide a generic power calculator for the evaluation of candidate indicators, it is here 
assumed that the time series of an indicator can be described by a stochastic linear model 
with an additive normally distributed error term. Observations are assumed to be derived 
from annual sampling schemes. In the case of missing observations, the analysis is restricted 
to the longest consecutive stretch of non-missing values in the time series. The slope of the 
historic trend line is estimated by simple linear regression analysis, which implies that the 
residual variance is assumed to be constant and has no autocorrelation. The extent to which 
these assumptions are violated should be judged by the user. Visual inspection of the time 
series with its trend line and residuals is imperative. 
 
The testing procedure concerns the slope of the trend line for a specified number of future 
years of follow-up. The test statistic T is defined as the difference between the observed slope 
of the future trend line and its anticipated value under H0, divided by the standard error of the 
estimated slope parameter. If the variance of observations about the linear trend will remain 
constant, T will follow a non-central t-distribution, the non-centrality parameter being equal 
to the slope parameter under H1 minus its value under H0, divided by its standard deviation 
under H0. From this, it follows that the power of a one-sided test is the probability that T is 
more extreme than some critical value c. The power of a two-sided test is the overall 
probability that T is more extreme than either c or –c.  Critical values are determined by the 
significance level of the test. Typically, critical values in a two-sided test with α = 0.05 
correspond to the 2.5th and 97.5th quantiles of a central t-distribution. 

Final comment 
It is assumed that the residual variance is constant throughout, not only for the duration of the 
historic time series, but also for the interval over which the power of an indicator is to be 
evaluated. Transformations to stabilize the variance and to make the trend linear may be 
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considered in advance, after which power should be evaluated on the transformed time series. 
In addition, the power of a particular indicator will be underestimated if intervention 
strategies tend to reduce its randomness, or overestimated if the opposite is true. 

References 
Gerrodette, T. 1987. A power analysis for detecting trends. Ecology, 68: 1364–1372. 
 
Nicholson, M.D. and Jennings, S. 2004. Testing candidate indicators to support ecosystem-
based management: the power of monitoring surveys to detect temporal trends in fish 
community metrics. ICES Journal of Marine Science, 61: 35–42. 
 
Piet, G.J. and Jennings, S. 2005. Response of potential fish community indicators to fishing. 
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Software 
After the function templates have been downloaded from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm and sent to R, the power of a candidate 
indicator can be obtained via a call to the function linear.trend(). This function requires at 
least two arguments: 
 
file  tab-delimited text file to be used, e.g. “codNS_tab2_wp2a.txt” 
var  candidate indicator to be evaluated, e.g. “L50.maturity” 
 
If the candidate indicator has been calculated separately for each age-class (for example, the 
wp2a spatial indicators), a third argument is required: 
 
age  age-class to be evaluated, e.g. “A4” 
 
The name for var should correspond to the variable name as provided in the header of the 
requested text file, whereas the name for age should correspond to a value of the variable 
Age. 
 
Additional arguments that may be set optionally by the user are: 
 
dir  directory where file is located (default: working directory) 
h0  slope under H0 (default: continuation of trend line) 
h1  slope under H1 (default: stabilization of trend line) 
alpha  significance level of the test (default: α = 0.05) 
horizon interval over which power is to be evaluated (default: 25 years) 
 
Arguments acting as character strings should be enclosed in quotation marks, e.g. 
 
> linear.trend(file=“codNS_tab2_wp2a.txt”, var=“L50.maturity”, h1=0, alpha=0.01) 
 
Power is calculated both for one-sided and two-sided tests. In one-sided tests, an increased 
slope parameter is anticipated if the historic trend line was decreasing and vice versa. By 
doing so, ecosystem-based management objectives are evaluated more efficiently than in 
two-sided tests, as the latter are more conservative. 
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Two graphs are output by the R script.  The first shows the time series that is used, together 
with the best-fitting linear trend line, and residuals which are plotted separately. The second 
shows the results of the power calculations, for one-sided and two-sided tests.  Figures are 
also printed to the screen, with oc1 and oc2 denoting one-sided and two-sided test results, 
respectively. 
 
 
 
 
 



 

 96

5.3.3 Statistical Process Control (SPC) schemes 
Benoit Mesnil and Pierre Petitgas 
IFREMER, Nantes 
 

Introduction 
Control charts are part of the statistical process control (SPC) tools routinely used over 
decades to monitor manufacturing processes and signal anomalies in performance. The 
process has some inherent variability and is said to be 'in-control' as long as it remains within 
acceptable bounds. If an anomaly occurs causing a deterioration in quality beyond the 
baseline variability the system is said to be 'out-of-control'. Control charts are graphical 
displays of some summary statistic of the observation data (e.g. an indicator) against the 
order index of the sample (e.g. time), together with reference 'marks' based on the in-control 
mean and variance, that are designed to detect whether a worrisome change in process output 
is indicated by the current data and a fix is required. Since there are costs associated with 
both false alarms and quality losses, the charts' parameters are tuned to achieve a desired 
trade-off between the risk of false alarm and the power to detect changes promptly. 
 
The cumulated sum type of control chart in its 'decision interval' form (DI-Cusum) has been 
selected for this project because it is advocated in SPC textbooks (e.g. Montgomery, 1991;  
Hawkins & Olwell, 1998) for the type of data considered in the survey indicators context. 
Control charts can be designed to monitor changes in mean level (location charts) or in 
variance (scale charts) of process outputs; explanations are only given for location charts 
here. More details can be found in the literature digest made for this project by Mesnil & 
Petitgas (WD) and in the papers cited therein. 

Derivation 
Suppose a suite of observations (individual or group means) xi collected at time i = 1, …m 
and assume that their in-control mean μ and standard deviation σx are known from a pilot 
study or for a reference period. In the following, it is considered that the data are first 
standardised through the transformation zi = (xi-μ)/σx.  
 
The decision-interval Cusum works by recursively accumulating positive and negative 
deviations separately with two statistics: 

[ ]kzSS iii −+= +
−

+
1,0max    

for positive deviations ('one-sided upper Cusum'), and 
[ ]kzSS iii ++= −

−
−

1,0min   
for negative deviations ('one-sided lower Cusum'), with starting values normally set as 

000 == −+ SS . A Cusum chart is obtained by plotting these statistics against i. 
 
The parameter k is usually called the reference value, or the allowance, and is related to the 
size of the smallest shift in the level of x that one is wishing to detect quickly. Note that 
deviations smaller than k are ignored in the recursions above. The decision rule is to declare 
an out-of-control state whenever S+ exceeds the decision interval h or S- falls below –h. The 
values chosen for the parameters h and k (in standard deviation units) determine the 
performance of the control chart; there is no theoretical objection against setting different h-k 
pairs for upper and lower Cusum's if changes in one direction matter more than in the other. 
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The performance of control charts is generally evaluated in terms of their run length. A run is 
the number of sampling events that elapse between the start of the monitoring and the first 
alarm. Run length is a random variable whose probability distribution depends on the process 
and the chart parameters, and it is its expectation – called Average Run Length (ARL) – that 
is commonly used as a summary measure of performance. In many instances the run length 
distribution is very broad and skewed, and it may be misleading to only consider its mean; 
the experts recommend to also look at other percentiles, whenever the distribution can be 
computed. The notation ARL(δ) is used to designate the ARL of an SPC scheme for 
detecting a change of size δ (in σx units) occurring in the process mean level. Thus, ARL(0) 
is the ARL of a scheme when the process actually stays in-control all the time (in-control, or 
IC ARL); yet, due to its inherent variability, an alarm may be raised by chance alone when 
the chart is updated with a new datum. In other words, ARL(0) is the average time until a 
false alarm is raised, which should ideally be large. Conversely, if the mean of the process 
distribution shifts from μ to μ+δ, due to an anomaly the chart should detect this quickly, 
implying a short ARL(δ). Chart parameters can be tuned to achieve the desired compromise, 
as explained in the guidelines below.  

Software 
Two R scripts have been developed to implement a Cusum monitoring scheme: 
CusumTutorial.r is generic, for exploring Cusum charts with 'free-format' time series vectors; 
FBCusumCharts.R is designed to automate the production of standard tables of results for the 
report ('traffic light template'). Both use a set of functions stored in the separate file 
CusumFuncs.r that must be sourced into the user's  R workspace (on first use) as instructed in 
the scripts. The scripts are meant to be run in a stepwise fashion (highlight a line or a block 
and submit to R) and are amply commented to guide the user. 
  
The top part of FBCusumCharts.R deals with each indicator in turn. Note that a logarithm 
transformation is applied to the Survey and Recruit indices (columns 5 and 6); the reference 
period for each case study is 'hard-wired' but can be edited if needed; an indication of an 
appropriate value for the allowance k, based on the mean deviation from the reference mean 
outside the reference period, is proposed but is not coded as a default value. Once the full set 
of indicators has been processed, the bottom part of the script gathers the individual resnam.# 
objects to produce the table of alarms (signed Cusum values above h or below –h) and the 
table of Cusum parameters and saves them to files. 
 
This implementation includes functions to compute in-control or out-of-control ARLs and 
run length distributions of one-sided Cusum for normal data, adapted from a Fortran code by 
F.F. Gan (1993) found on the StatLib JQT archive. They have been checked against the 
values tabulated in various SPC textbooks and articles, and the results match very well. They 
need to be optimised for R, to speed up the computation of RL distributions which requires 
some patience at the moment. 

Practical guidelines 

 A) Cusum design: tuning the chart parameters k and h 
With fisheries survey data, we in general have to analyse time series of one or several 
indicators of population status (control variables). We have one value per indicator per year 
(individual data) with perhaps the precision on the indicator in each year. We distinguish 2 
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phases: Phase I for defining the in-control (IC) period; and Phase II for designing the Cusum 
to signal change from the in-control state with desired performance. 

Phase I 
The task in Phase I is to set the IC or reference process parameters μ and σ. It is a critical 
phase in that the values adopted for these parameters will condition the diagnostic that will 
be made later. Normally, this is an experimental phase where the state of the system is 
closely checked, many measurements are taken and scrutinised, to retain only those that can 
be safely assumed to correspond to a well behaved process. In our case, we will often start 
with existing data collected in the past, and Phase I will essentially consist in the 
definition/choice of an in-control (or reference) period, and using the data in the selected to 
years to estimate in-control parameters μ and σ. The IC period can be defined on various 
criteria, including an analysis of the times series. The IC period is best defined collectively, 
on expert knowledge, as the period in which the population was in a satisfactory state and/or 
showing satisfactory dynamics. For example, within the Fisboat project, the IC period was 
defined collectively during a workshop as the period when the indicator value showed 
"satisfactory" values with low variation (no obvious outlier). Thus, the IC period may not 
necessarily comprise consecutive years. Sensitivity to the IC period should be analysed and 
the IC period may be also re-defined a posteriori. This is consistent with the iterative and 
rejection procedures described in SPC textbooks. 

Phase II 
In Phase II the task is to design (or tune) the Cusum scheme to signal a specified deviation 
from the IC mean with a desired performance, i.e. this is where the chart parameters k 
(allowance) and h (interval) are determined. The choice of k is based on the magnitude of the 
shift δ in the mean that makes "a meaningful impact" on the system, driving it out of control. 
The value of h determines whether an alarm is raised or not (an alarm is triggered when the 
cusum plot crosses the horizontal line at h, or -h or +h for a two sided Cusum). The rationale 
for choosing h is primarily based on minimising the risk of false alarm,  but the ability to 
promptly detect shifts that matter should also be preserved. Setting h, once k is chosen, 
involves Run Length considerations. A four-step procedure is suggested1: 
1. Regarding k, if δ is the shift of interest (in sd units), there is broad support in the literature 

for setting k at half the value of that shift (formal demonstration in Chap. 6 of Hawkins & 
Olwell), and this rule can be safely adopted. The "meaningful" shift  δ can be set after 
analysing the deviations from μ outside the IC period. For instance, the shift to be 
detected can be set to a percentile of these deviations or to their mean. For fisheries 
survey based population indicators, k will take in general a value between 0.5 and 1.5; too 
small values of k should be avoided (Hawkins & Olwell, p. 33). 

2. Using tables or software with a zero value for the shift δ, search for an h that gives 
desirably large IC ARL(0) given k, and thus a low risk of false alarm. Larger values of h 
(and k) lead to larger ARLs. 

3. Because the RL distribution may be quite skewed, consideration of the average RL alone 
may be misleading and, using the function arldis.f in the Fisboat R scripts, the full 
distribution of the in-control RL should be checked. For example, if you choose k and h 
to aim for a "large" IC ARL of 100, and observe a "small" value of 10 samples or less for 
the 25th percentile, it is likely in the actual application of the scheme that more false 
alarms will occur than the large ARL(0) makes you think. If so increase h. 

                                                 
1 Reminder: in all this, we assume the indicator series have first been standardised. 
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4. The h value arrived at in the previous steps may have made you reasonably content with 
the false alarm risk, but you then need to ascertain that the scheme is able to quickly 
detect the shifts you are interested in, i.e. that its out-of-control ARL is small enough. 
Return to the ARL tables or software with a value of 2k for the shift δ, and check that the 
OC ARL(δ) corresponding to the envisaged h is adequately small. In general, it is 
possible to find values of k and h so that the OC ARL does not exceed 3 years. 

 
As pointed out earlier the basic challenge of using and tuning SPC schemes is to find an 
acceptable compromise between the risk of false alarm and the power to detect shifts that 
matter in the state of the system, and it is often necessary to iterate through these 4 steps to 
arrive at that compromise. The notions of "meaningful impact", "acceptable risk" and 
"desired performance" are very much policy issues and have to be decided in partnership 
with managers and stakeholders. 

B) Assumptions and effects of violations 
The main assumptions underlying the statistical properties of Cusum charts are (i) that the 
monitored variable has a distribution from the exponential family; in particular, the run 
length characteristics commonly tabled in textbooks or computed with the R software coded 
for this project are only valid for normally distributed data; (ii) that the in-control process 
parameters are known rather than estimated; and (iii) that the time series of residual variation 
has no correlation in time. Violations of these assumptions all go in the same direction: the 
in-control ARL(0) experienced in practice is shorter than the value computed for the perfect 
case, i.e. the chances of false alarms are larger than expected (e.g. Section 3.7 in Hawkins & 
Olwell; Jones et al., 2004; Lu & Reynolds, 1999; Reynolds & Stoumbos, 2004). Smaller 
values of k (also large h) enhance the robustness to non-normality, but increase the impact of 
estimating the reference mean and sd from the data. An encouraging note: even though a 
Cusum tuned with a given k is optimal for detecting shifts of 2*k standard deviations, its 
performance remains high for actual shifts that are 'not too far' (Hawkins & Olwell, p. 54). 
Time series of survey data population indicators are often short (< 20 years) with marked 
deviations and sometimes show correlation or trend. It is advised to check the distribution of 
the indicator variable as well as its correlation in time. It may be necessary  in some cases to 
transform the variable into a Gaussian or to detrend the time series. The reference period is 
even shorter, and we use noisy data to estimate the IC process parameters. Since all 
departures from the assumptions will result in effective RLs being very different (in general 
shorter) than values publicised for the "clean" case, an ad hoc remedy is to take relatively 
large h values. Conservative advice is to use (k,h) parameters giving large IC RLs: ARL > 20 
years and 25th  percentile of RL distribution > 10 years. When some deviations from μ 
outside the reference period are large in comparison to σ, it may be telling that the variance 
has changed or that the indicator variable is skewed. In that case, starting Phase II with a 
large value of k is advisable. When the value of h is small in comparison to an increasing 
(decreasing) Cusum deviation, it may be telling that there is correlation in time in the 
indicator series. 

C) Strengths and weaknesses 
Control charts have been in operation in many branches of industry since the 1930's and their 
statistical bases have been thoroughly investigated in a huge body of literature (the references 
below are just a tiny sample).They are still a recurrent topic of specialised journals such as 
the Journal of Quality Technology or Technometrics. Applications have been extended to 
environmental surveillance, biomedicine, clinical tests, and public health. The strengths in 
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these domains are that the in-control state is well defined, the monitoring involves numerous 
samples taken at high frequency through rigorous sampling designs, and measurement errors 
are often small. 
  
In contrast, this defines the weaknesses for fisheries applications. Perhaps the main limitation 
is our poor ability to characterise the reference state of fisheries (or of ecosystems) with 
survey data that just span the recent decade(s) in a background of large variability 
compounded by substantial sampling variance (i.e. we do not have a proper Phase I). Keep in 
mind, however, that the reference state does not imply perfect stability; the goal of control 
charts is to spot those events where the state of the system jumps beyond the domain of its 
inherent variability. 
 
A virtue of the Cusum approach is that it does not presume the nature of the change (linear, 
trend or otherwise) and treats positive and negative deviations equally. Cusum charts are best 
suited to detecting small, persistent changes. Anomalies in the system can take the form of 
shifts in the mean and/or changes in the variance of the distribution. Specific control charts 
can deal with both situations. Actually, it is common to combine location and scale charts to 
enhance the detection performance for both small and large shifts (Reynolds & Stoumbos, 
2004). 
 
It has been demonstrated that, among the procedures that have similar in-control ARL(0), the 
Cusum has the smallest expected time until a change is detected when it occurs. This is the 
basis of the rationale for tuning the chart, with priority given to achieving large ARL(0). The 
emphasis on low risk of false alarm has some practical advantage in our application to 
fisheries management and its overly controversial atmosphere; we have learnt to know that 
casting assessment noise straight into fisheries regulations has damaged our credibility and 
our relations with the industry, and a method that explicitly aims to avoid this should help. 
Lastly, the biggest advantage of the Cusum is that it is so simple to implement. Yet, it 
provides a formal framework to establish diagnostics in an objective and replicable way. 
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5.3.4 Nonparametric statistical methods for assessing trends. 
John Cotter 
CEFAS, Lowestoft 

Introduction 
This note describes a selection of nonparametric statistical methods thought to be useful for 
assessing trends in fishery statistics or indicators, e.g. abundance-at-age, mean length, 
geostatistical indices, or just about any continuous variable.   The trends referred to here are 
assumed to relate to time but they could also relate to a transect over a spatial dimension.  
The literature on trends is extensive so this note can only provide a modest introduction to it.  
Loftis et al. (1991b) point out that formal statistical methods do not usually reveal trends that 
are not apparent from inspection of the data but they are useful for allowing different data 
analysts to reach similar conclusions from the same data and assumptions.  Several of the 
references cited come from the literature on monitoring of water pollution where the sporadic 
and chaotic nature of variation combined with frequent gaps in the time-series has stimulated 
development of nonparametric methods because of their minimal assumptions.  Fisheries 
scientists typically prefer modelling, i.e. parametric methods for assessing trends in fish 
stocks and have exploited nonparametric methods relatively lightly.  All the same, trends in 
fish stocks could be established with less reliance on assumptions about the data and models 
if nonparametric methods were used.  Furthermore, interest nowadays is shifting from 
estimation of quantities of fish in a single commercial stock to assessment of whole 
ecosystems, a task for which well established, structural models are not always available.     
 
There has been little discussion in the literature of statistical inference in relation to trends.  
This note therefore begins by proposing some points thought to be important.  A variety of 
nonparametric statistical tests tailored for assessing trends is then introduced, some of which 
are easy to calculate with a spreadsheet but limited to providing only the most general 
statements, e.g. the binomial test with the median, and others which are more elaborate and 
specific, e.g. Mann-Kendall's Tau which finds monotonic trends.  Multivariate tests presented 
include Cochran’s Q and the the Dietz-Killeen test.  A spreadsheet accompanying the paper 
illustrates application of each method to a single test set of data, namely a set of abundance-
at-age figures for cod from the North Sea IBTS quarter 1 survey.  There were few problems 
in Excel for the univariate tests once the relevant functions had been discovered (e.g. 
RANK(), MEDIAN(), and BINOMDIST()) although some methods were quite labour 
intensive.  The spreadsheet can be downloaded from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm.  Alternatively, the methods could easily 
be implemented in R (and several already are).  R code is available from the same site for the 
Dietz and Killeen multivariate trend test. 

Inferring about trends 
A distinction is acknowledged here between the true, unknown trend, called the signal, and 
the measures of it made with error, called observations.   Most analyses of trends have to be 
based on the following assumptions: at all times, t, 

• E(measurement error) = 0  
• E[(measurement error at t) * (measurement error at t+∆)] = 0 where ∆ is any lag 

interval, and 
• E(measurement error * signal) = 0. 
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E() is the operator for statistical expectation.  In words, measurement errors should average 
to zero, have no serial correlation, and be independent of the level of the signal.  Failure of 
any of these assumptions could lead to spurious trends unrelated to the signal. 
 
“Trend” is hard to define more specifically than our intuitive understanding of a general 
movement up or down of an observed variable.  A trend can occur in the observations, in the 
signal, or in both.  Usually we think of a trend as monotonic upwards (or downwards), i.e. 
with every observed value at time t equal to, or higher (or lower) than that at t-1.  However, 
turning points, either real or error-based, are likely to occur too.  Their occurrence in an 
observed series is not necessarily, by itself, an accurate indicator of the position of the turn in 
the signal, or of its magnitude at that point.  For an explanatory analogy of this, consider 
flying over a mountain range and dropping weights at fixed intervals without looking where; 
some might fall on high ground but few, if any, will fall exactly on the turning points of 
height, e.g. the mountain peaks.  Step changes can also occur in time series and may look like 
smooth trends when obscured by observation errors.  Nonparametric methods for inferring 
the location and magnitude of a step are discussed by Pettitt (1979).  The Mann-Whitney 
nonparametric test is another option when the location of the step is known (Lettenmaier 
1976).  The binomial test, see below, would be even simpler. 
 
Statistical tests for trend are affected by the statistical approach adopted.  There are two 
accepted ways of thinking about time-series:  
 

(i) design-based: the signal is assumed to be unique and fixed over any defined 
interval of time; the results of a survey depend on its design.  

(ii) model-based: the signal is assumed to be one of many possible realisations over 
that interval; results of a survey depend on the model fitted to the data.   

 
Under design-based thinking, the null hypothesis of no trend, meaning exactly equal values 
of the signal at all observation points, would seldom be plausible for fisheries data unless the 
locations of observation were extremely close, or all possible causes of variation temporarily 
ceased to exist.  The analogy of the rocky mountain range is again applicable – no two 
observation points along a transect are likely to be at exactly the same height.  Provided that 
there are enough observations, and measurements are made accurately enough, statistically 
significant differences in value will be discovered even though these may not be significant 
in practical terms (Loftis et al. 1991b).  Model-based thinking comes from the other 
conceptual direction by assuming that a signal should be assumed to be horizontal  until 
evidence indicates otherwise.   The analogy here is of a randomised experiment in which 
subjects from one defined population are assigned randomly to treatments so that, if the 
treatments have no effect, the null hypothesis of equal means in each experimental group is 
readily plausible.  This brings in the concept of the statistical power of a test for trend 
(Lettenmaier 1976; Nicholson and Fryer 1992). 
 
The implications of serial correlation are also affected by whether the approach is design- or 
model-based.  In the first case, the distinction between serial correlation and trend is 
undefined.  Serially correlated values can look like a trend when observed through a 
narrowed time window, and, vice versa, a trend can look like serial correlation when 
observed through a widened window.  Either situation could cause rejection of the “no trend” 
hypothesis.  Under model-based inference, serial correlation invalidates nonparametric tests 
that are based on the null assumption that all permutations of values around a horizontal 
signal are equally likely.  Serial correlation can be decreased by increasing the time intervals 
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between observations, or by modelling the serial correlation and subtracting the estimates 
from the series (Lettenmaier 1976).  Seasonal or other cyclical trends add to the 
complications since the seasonal trends may themselves move independently over years (Van 
Bell and Hughes 1984), and measurement errors could be serially correlated from one season 
to the next (Zetterqvist 1991; El-Shaarawi and Niculescu 1992).  Several nonparametric 
methods for seasonal trends are available (Hirsch et al. 1982; El-Shaarawi 1993; Esterby 
1993; Yu et al. 1993) but they are not considered in detail here since most fish survey data 
are annual. 
 
Monotonic trends might appear linear or curvilinear.  These are easily modelled, of course, 
but, with the design-based approach, any structural model of the pattern could only be 
postulated as a rough approximation to the signal from a natural system.   
 
The design-based approach is preferred here for its plausibility, because avoidance of 
modelling is consistent with the simplicity underlying nonparametric statistics, and because it 
relieves the analyst of many assumptions associated with model identification and fitting, 
thereby offering a genuine alternative to modelling.  To be consistent with the design-based 
approach, I suggest replacing the term “hypothesis” with the word “notion” when describing 
the signal as having no trend or a specific type of trend so as to be clearer about the 
informality of a test in these circumstances.  Trends can be estimated together with 
confidence limits without testing the usually untenable notion of 'no trend'.  Alternatively, the 
more reasonable null hypothesis (H) : “trend ≤ 0” can be tested with nonparametric methods 
against the alternative (A) : “trend > 0”.  This one-sided H encompasses a region of 
probability, not a point.  [Technically, it is a ‘composite hypothesis’ (Brownlee 1965).]  If 
true, it would not be rejected by a sample, however large or precise, except by chance with 
probability α, as expected for a statistical test.  Usually, this null hypothesis would be the 
most sensible choice for a test because a one-sided test is consistent with a prior concern that 
the trend is in one direction.  Applying a two-sided test for either a positive or negative trend 
could suggest that the data are being mined unscientifically for any detectable feature. 
 
A special problem with assessing trends is that they are often noticed in graphical plots 
before they are tested statistically or confidence limits are fitted.  Bearing in mind that trends 
are often visible in series of random numbers (Kendall 1976), the application of statistical 
methods a posteriori could be misleading.  Equally risky is when the terminal points of a 
trend are decided by inspection.  Questions of the type “Is this variable going up or down?”, 
e.g. for the purposes of controlling environmental quality, should be completed with “since 
when” before assessing statistically because the probability of a trend is likely to depend on 
the chosen starting point, as well as the end point if not the final observation.  If the interest 
lies in cause and effect, the recommended plan is to decide by prior reasoning when a trend 
might occur and in which direction, then to apply statistical methods to test whether the trend 
is present.  If it is, linking it with a putative cause in a matching time-frame might be 
reasonable as a cautious, on-going hypothesis.  Loftis et al (1991b) point out that trend 
analysis cannot establish cause and effect relationships. 

Nonparametric statistical methods for trends 

1. Example data 
Table 5.13.1 shows abundance (N per hour) indices for North Sea cod as found by the ICES 
International Bottom Trawl quarter 1 surveys from 1976 to 2004 at ages 1 to 6, except that 
results for ages 3 to 6 were missing in the earlier years.  These values were taken from a 
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report of the ICES working group on fish stocks of the North Sea and Skagerrak.  They will 
be used to illustrate application of various nonparametric statistical methods.  Some use the 
full time-series; others have to use only 1983 to 2004 when all age classes were determined. 
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Table 5.13.1.  International bottom trawl survey (IBTS) quarter 1: time series of abundance indices (numbers 
caught per hour) for cod in the North Sea in 6 age classes. -1 = missing value. 

 
Year Age1 Age2 Age3 Age4 Age5 Age6 
1976 7.9 19.9 -1 -1 -1 -1 
1977 36.7 3.2 -1 -1 -1 -1 
1978 12.9 29.3 -1 -1 -1 -1 
1979 9.9 9.3 -1 -1 -1 -1 
1980 16.9 14.8 -1 -1 -1 -1 
1981 2.9 25.5 -1 -1 -1 -1 
1982 9.2 6.7 -1 -1 -1 -1 
1983 3.9 16.6 2.7 1.8 0.8 1.5 
1984 15.2 8 3.9 0.9 1 0.9 
1985 0.9 17.6 3.5 1.7 0.5 1 
1986 17 3.6 6.8 2.3 1.3 1.1 
1987 8.8 28.8 1.4 1.7 0.6 0.9 
1988 3.6 6.1 5.8 0.6 0.9 1.1 
1989 13.1 6.3 5 2.3 0.4 1 
1990 3.4 15.2 2 1 1 0.8 
1991 2.4 4.1 3.4 0.8 0.4 0.8 
1992 13 4.5 1.2 1 0.3 0.5 
1993 12.7 19.9 2 0.7 0.6 0.4 
1994 14.8 4.4 3 0.8 0.5 0.5 
1995 9.7 22.1 2.8 1.1 0.3 0.3 
1996 3.5 8 6 0.7 0.6 0.4 
1997 40 6.9 2.3 1.1 0.4 0.4 
1998 2.7 26.4 2 0.9 0.5 0.4 
1999 2.1 1.6 8.1 0.8 0.5 0.5 
2000 6.6 3.8 0.7 2 0.4 0.5 
2001 2.8 8.7 1.7 0.2 0.4 0.3 
2002 7.8 3.4 4.3 0.5 0.1 0.2 
2003 0.6 3 1 1.4 0.4 0.3 
2004 7.5 1.3 1.2 0.30 0.4 0.01 
Median 7.9 8.0 2.75 0.95 0.5 0.5 
 

2. Quantiles and binomial methods 
A time-series may be characterised most basically by its median value +/- binomial 
confidence limits.  The latter are found by firstly ranking the observed values, then finding 
the ranks, conventionally shown in brackets as (a) and (b), with cumulative binomial 
probabilities nearest to the required confidence limits, e.g. 2.5% and 97.5% for the case of 
limits of approximately 95%.  Limits exactly at some preset, rounded percentage are seldom 
possible with the binomial distribution.  Binomial confidence limits for the median, μ~ , of a 
variable X are obtained with 
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where { }B  is the binomial probability function for sample size N and probability of 
‘success’=0.5 (for the median). See Connover (1971) for more details.  The binomial 
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probabilities are based on an assumption that the observations fall independently and 
randomly to either side of the median for the tested time period, a questionable assumption if 
a trend is present. [They can be computed in an MicroSoft Excel spreadsheet with the 
BINOMDIST function.]  Applying these formulae to an example subset of the abundance 
indices shown in table 5.13.1, the median index for age 1 cod from 1976 to 2004 was 7.9 
with 93.86% confidence limits of 3.5 and 12.7 if there was no trend.  These correspond to 
ranks a = 9 and b = 20 with cumulative binomial probabilities of 0.0307 and 0.969 
respectively.     Binomial confidence limits can also be estimated for more than one 
percentile simultaneously, e.g. the 10, 50, and 90 percentiles (Cotter 1985).   
 
The binomial distribution can be used to test H : “trend ≥ 0” against A : “trend < 0” by 
assuming only that the estimated median is close to the true median for the whole tested 
period.  This is a very simple test to carry out but it would often miss trends that would be 
detected by more elaborate methods.  Four quadrants are formed by intersection of the 
estimated median observed value with the median of the observation times, the latter being 
the vertical line half way through the observed series.  The test could also be applied to look 
for a step change; the vertical line would then be located at the time when the step change is 
expected.  Each observed value and its associated time of observation is then classified by 
quadrant.  The null hypothesis, H, implies that observations will fall equally into each 
quadrant or that there will be more in the lower left and top right quadrants.  Suppose that x 
out of N observations fall in either the top left or bottom right quadrants, implying A, a 
downward trend.  The probability that H is true is 
 

  { } { }∑
=

−≤=
x
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iNBtrueH

0
,5.0,1Pr . 

 
[The '≤' would be '=' if H only represented independence of the four quadrants.]  Calculations 
for all ages are shown in table 5.13.2.  With the probability of rejecting H given that it is true 
being α=0.05, we would accept downward trends in abundance for cod of ages 2, 5, and 6.  
Note however that this is a set of univariate tests, so use of a lower value of α might be 
preferred to allow for the increased possibilities of type 1 errors in multiple tests.  A simple, 
if conservative, way to achieve this is with the Bonferroni inequality (Prins 2006); when 
conducting km ,...,1=  tests, set km αα = .  In this case, 0083.0=mα  implying that 
downward trends should only be accepted for the 5 and 6 year-olds.  Binomial tests can also 
be applied to assess compliance with an ecological quality objective set as a quantile other 
than the median though larger sample sizes tend to be necessary to find statistical 
significance (Cotter 1985).  Compliance testing with multiple objectives set as quantiles is 
further discussed by Cotter (1994). 
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Table 5.13.2.  Binomial test for a trend relative to the median value for the abundance indices shown in table 
5.13.1.  x = observed value, t = observation time; 0 indicates index ≤ median ;1 indicates index > median. 

 
Year Age1 Age2 Age3 Age4 Age5 Age6 
1976 0 1     
1977 1 0     
1978 1 1     
1979 1 1     
1980 1 1     
1981 0 1     
1982 1 0     
1983 0 1 0 1 1 1 
1984 1 0 1 0 1 1 
1985 0 1 1 1 0 1 
1986 1 0 1 1 1 1 
1987 1 1 0 1 1 1 
1988 0 0 1 0 1 1 
1989 1 0 1 1 0 1 
1990 =  median 
(1976-2004) 

0 1 0 1 1 1 

1991 0 0 1 0 0 1 
1992 1 0 0 1 0 0 
1993 = median 
(1983-2004) 

1 1 0 0 1 0 

1994 1 0 1 0 0 0 
1995 1 1 1 1 0 0 
1996 0 0 1 0 1 0 
1997 1 0 0 1 0 0 
1998 0 1 0 0 0 0 
1999 0 0 1 0 0 0 
2000 0 0 0 1 0 0 
2001 0 1 0 0 0 0 
2002 0 0 1 0 0 0 
2003 0 0 0 1 0 0 
2004 0 0 0 0 0 0 
Number of 
x > median and 
t <= med(year) 

9 9 6 7 7 9 

Number of 
x < median and 
t > med(year) 

9 10 6 7 10 11 

Number of x 
 

29 29 22 22 22 22 

Binomial 
probability (H: 
trend >=0 ) 

0.068 0.031 0.262 0.067 0.002 <0.001 

 
 

3. Cochran’s Q test 
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Cochran’s Q (Cochran 1950) tests the notion that the probabilities of response are the same 
(H) in different groups or, alternatively (A) detectably different.  The test can be adapted to 
look at multiple trends with the aim of avoiding the problem of multiple univariate tests 
mentioned in connection with binomial tests, above.  This is illustrated in table 5.13.3 using 
the abundance indices for 1 to 6 year-olds from 1983 to 2004. Age classes of cod are treated 
as groups, and each observed value is marked as a response, i.e. with a 1, if above the median 
value and located on or before the median time, or if below the median value and after the 
median time.  Otherwise it is marked as a non-response, i.e. with a 0.  In other words, each 
value gets 1 if it is consistent with a downward trend, and 0 otherwise.  The markings are 
shown in table 5.13.3.  Let jT  be the column sums in the j’th age class, Cj ,,1K= , and T  
the mean of them.  Let iu  be the i’th row sum, Ri ,,1K= .  Then Cochran’s statistic is 
defined as  
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Q is distributed as 2χ  with ( )1−C  degrees of freedom (Brownlee 1965, section 7.10) under 
H.  Note that Q is not sensitive to the total number of responses (since many of the iu may be 
zero) hence, for our purposes, it does not by itself establish whether or not an overall trend is 
present.  For the example, 56.3=Q  which is much less than ( ) 07.1152 =χ  implying that the 
different age classes are not showing detectably different trends, given that a general 
downward trend exists.  Cochran’s Q appears to have similarities with Friedman’s rank test 
for blocked data (Brownlee 1965), and with van Belle and Hughes’ test for homogeneity of 
seasonal trend (Van Bell and Hughes 1984).  El-Shaarawi (1993) suggests ways of extending 
the latter method to testing the notions that linear or quadratic patterns exist in the seasonal 
trends. 
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Table 5.13.3.  Cochran's Q test applied to age classes 1 to 6 from 1983 to 2004 for the abundance indices 
shown in table 5.13.1 illustrating how observed abundance indices are marked.  0 means index ≤ median and 1 

means index > median if year ≤ 1993, and vice versa if year > 1993. 

 
Year Age1 Age2 Age3 Age4 Age5 Age6 
1983 0 1 0 1 1 1 
1984 1 0 1 0 1 1 
1985 0 1 1 1 0 1 
1986 1 0 1 1 1 1 
1987 1 1 0 1 1 1 
1988 0 0 1 0 1 1 
1989 1 0 1 1 0 1 
1990 0 1 0 1 1 1 
1991 0 0 1 0 0 1 
1992 1 0 0 1 0 0 
1993 1 1 0 0 1 0 
1994 0 1 0 1 1 1 
1995 0 0 0 0 1 1 
1996 1 1 0 1 0 1 
1997 0 1 1 0 1 1 
1998 1 0 1 1 1 1 
1999 1 1 0 1 1 1 
2000 1 1 1 0 1 1 
2001 1 0 1 1 1 1 
2002 1 1 0 1 1 1 
2003 1 1 1 0 1 1 
2004 1 1 1 1 1 1 

 

4. Runs test 
A ‘run’ is defined as any sequence of 1 or more like elements from two classes.  In the 
present context, this could mean above or below a level line, or a notional trend line.  The 
runs test examines the notion of randomness in a series by looking at the number of runs of 
observed values above and below the median and comparing with the expected number 
which, along with variance, can be computed from theory.  Non-randomness is usually 
represented by positive serial correlation of the observations, i.e. fewer than the expected 
number of runs, hence the test is usually one-sided.  Serial correlation may be of interest in 
itself, e.g. as an interfering factor in a model-based test of trend (Loftis et al. 1991b), but 
could also arise from non-monotonic trends in the underlying signal.   
 
Sources on the runs test are texts by Brownlee (1965, section 6.3) and Conover (1971, p. 
349).  Let the two classes of elements be a or b for ‘above’ or ‘below’ the sample median.  
Values equal to the median are ignored.  Let the number of a’s be m .  Then the number of 
b’s turns out also to be m, assuming no tied values.   The expected number, u, of runs is  
 
  ( ) muE += 1  
 
and the variance is 
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Exact probabilities of runs are available (Swed and Eisenhart 1943) but for series of 
reasonable length (?), it is easier, and justifiable under the Central Limit Theorem, to assume 
that the statistic 
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is approximately a standard normal variate.  The 0.5 in the numerator is a correction for 
continuity.  For a one-sided test, compare the test statistic with the standard normal deviate 
having cumulative probability of α.  If the probability of the observed number of runs is less, 
serial correlation is detected.   
 
The runs test is illustrated using the abundance indices for 1 to 2 year-olds from 1976 to 
2004, and for 3 to 6 year-olds from 1983 to 2004 in table 5.13.4.  Scoring of the runs above 
and below the median is shown in table 5.13.4.  It is similar to the markings in table 5.13.2 
except that values equal to the median must also be marked and ignored when counting the 
runs.  Some tied values prevented n and m from being equal in each of age classes 2 and 5; m 
and n were adjusted to the minimum of the pair.  The probabilities that the series were 
random, shown at the bottom of table 5.13.4, indicates that only the 6 year-olds were non-
random by this test.  The runs test is noticeably less sensitive to pure trend than the binomial 
test in relation to the median (section 2 above) because the continuity of runs above and 
below the median is frequently broken by variant observations. 
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Table 5.13.4.  Runs test applied to age classes 1 to 6 from 1983 to 2004 for the abundance indices shown in 
table 5.13.1 illustrating how runs are obtained.  0 means index ≤ median and 1 means index > median; M means 

= median (observation ignored). 

 
 

Year Age1 Age2 Age3 Age4 Age5 Age6 
1976 M 1     
1977 1 0     
1978 1 1     
1979 1 1     
1980 1 1     
1981 0 1     
1982 1 0     
1983 0 1 0 1 1 1 
1984 1 M 1 0 1 1 
1985 0 1 1 1 M 1 
1986 1 0 1 1 1 1 
1987 1 1 0 1 1 1 
1988 0 0 1 0 1 1 
1989 1 0 1 1 0 1 
1990 =  
Median 
(1976-2004) 

0 1 0 1 1 1 

1991 0 0 1 0 0 1 
1992 1 0 0 1 0 M 
1993 = 
Median 
(1983-2004) 

1 1 0 0 1 0 

1994 1 0 1 0 M M 
1995 1 1 1 1 0 0 
1996 0 M 1 0 1 0 
1997 1 0 0 1 0 0 
1998 0 1 0 0 M 0 
1999 0 0 1 0 M M 
2000 0 0 0 1 0 M 
2001 0 1 0 0 0 0 
2002 0 0 1 0 0 0 
2003 0 0 0 1 0 0 
2004 0 0 0 0 0 0 
N runs=> 14 18 13 16 8 2 

N>median: 
m 

14 13 11 11 8 9 

N<=median:
n 

14 14 11 11 10 9 

Adjusted m,n 14 13 11 11 8 9 

E(runs)= 15 14 12 12 9 10 
V(runs)= 6.74 6.24 5.24 5.24 3.73 4.24 
Normal d.f. -0.19 1.80 0.66 1.97 -0.26 -3.64 
Probability 
that series is 
random 

0.42 0.96 0.74 0.98 0.40 <0.01 
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5. Mann-Kendall’s K 
Kendall’s tau is used to measure concordance or correlation (Hollander and Wolfe 1973).  
Slightly adapted (Mann 1945), Kendall’s method is considered to be very sensitive to 
monotonic trends (Esterby 1993).  Every observed value is paired with every value observed 
after it and the pair scored 1 if the first is greater than the second, 0 if the same, and –1 if the 
first is less than the second.  The Mann-Kendall test statistic, K, is the sum of these values2.  
The null hypothesis is H : “trend ≥ 0” against A: “trend is monotonic, negative”, or vice 
versa.    Note that, if a turning point is definitely expected at a certain time, the observations 
could be re-ordered in time to conform with monotonicity under A. 
 
K takes on large positive or negative values when a monotonic trend is present.  One-tail 
probabilities of observing K under H are tabulated by Hollander and Wolfe (1973, Appendix 
A.21) but, for large samples of size n, 
 
   ( )( )[ ]18521* +−= nnnKK  
 
is distributed as a standard normal variate if no data are tied.  If there are ties, the square root 
denominator representing the standard error of K has to be inflated (Hollander and Wolfe 
1973, p. 187).   According to a citation in Yu et al. (1993), 10 observations are adequate for 
“large sample”.   
 
Scoring of observations for Kendall’s K is illustrated in table 5.13.5 for age 1 abundance 
indices for cod from 1976 to 2004.  The full table has 29 columns, so only 3 years of scores 
are shown.  The sum of all the scores from 1976 to 2004 (K) was -106, and n=29, giving a 
large-sample standard normal approximation of -1.988.  The corresponding probability of no 
trend is 0.02, implying here that a monotonic, downward trend was present in the signal.  
Note that the test is more sensitive to trend than the median test for trend where the 
probability of no trend was found to be 0.068 (table 5.13.2).  On the other hand, the Mann-
Kendall test is much more work to carry out on a spreadsheet.  Kendall’s test is available in 
R [cor.test(. . . method=”kendall”. . .).  The observed values are correlated with times of 
observation, or their ranks, to achieve the Mann-Kendall test. 
 

                                                 
2 Kendall’s ( )12 −= nnKτ  is that used in correlation studies. 
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Table 5.13.5.  Kendall's Tau test applied to age class 1 from 1976 to 2004 for the abundance indices shown in 
table 5.13.1 illustrating how the sequence of observed indices is scored for 1976 with subsequent years (column 

1), and similarly for 1977 and 1978 (columns 2 and 3).  Other years to 2004 not shown. x denotes observed 
value, k and i are years. 

 
Year sign(x(k) - x(i)), i<k 
 1976 1977 1978 
1977 1   
1978 1 -1  
1979 1 -1 -1 
1980 1 -1 1 
1981 -1 -1 -1 
1982 1 -1 -1 
1983 -1 -1 -1 
1984 1 -1 1 
1985 -1 -1 -1 
1986 1 -1 1 
1987 1 -1 -1 
1988 -1 -1 -1 
1989 1 -1 1 
1990 -1 -1 -1 
1991 -1 -1 -1 
1992 1 -1 1 
1993 1 -1 -1 
1994 1 -1 1 
1995 1 -1 -1 
1996 -1 -1 -1 
1997 1 1 1 
1998 -1 -1 -1 
1999 -1 -1 -1 
2000 -1 -1 -1 
2001 -1 -1 -1 
2002 -1 -1 -1 
2003 -1 -1 -1 
2004 -1 -1 -1 

 

6. Thiel’s or Sen’s slope estimator 
Thiel’s slope estimator is used for a notional linear trend: 
 
  iii exY ++= βα ,                    ni ,...,1=  
 
The e’s must be mutually independent and from the same continuous population (Hollander 
and Wolfe 1973).  Theil’s estimator for β  is similar in construction to that for Mann-
Kendall’s K.  Every observed value is paired with every value observed after it, and the 
slope, ( ) ( )ijijij xxYYS −−= , ji < , calculated.  Theil’s estimator is the median of these 
values.  Sen’s estimator, as described by Yu et al. (1993), appears to be exactly the same.  
Small sample confidence limits are available using Hollander and Wolfe (1973, chapter 9 and 
table A.21).  For large samples, use the rounded integer value of  
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The α−1  confidence interval is obtained from the ranked slope values.  Use ( ) ( ){ }UL SS ,  
where rank ( ) 2αCNL −=  and rank ( ) 2αCNU += .   
 
As an illustration, Thiel’s slope estimator and 95% confidence limits were calculated for the 
age 1 abundance indices for cod from 1976 to 2004.  The median slope, -0.23, is drawn 
through the intersection of the median value of Age 1 indices, 7.9 fish per hour, and the 
median observation time, 1990, in fig. 5.13.1 below.  I am not aware of a method for 
estimating confidence limits for Y that takes into account the covariance of estimated α  and 
β . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13.1  Thiel’s slope estimator for the age 1 abundance indices, 1976 to 2004, shown in table 5.13.1. 

 

7. Spearman’s rho 
Spearman’s rho is the product-moment correlation between the ranks of paired data, the 
ranking being carried out separately for each variable of the pair.  To test for trend, one 
member of the pair is the time of observation, the other is the observed variable.  In practice, 
the arithmetic needed to calculate rho can be avoided by simply using 
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where i indexes the observation times and ( )iXR  is the rank of the corresponding 
observation (Lettenmaier 1976).   This is also known as the Hotelling-Pabst test.  T is small 
when ( )iXR  and i are positively correlated, and large when negatively correlated.  Connover 
(1971, p389) gives quantiles for T for series up to 30 observations.  Alternatively, use 
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where px  is the p’th quantile of a standard normal deviate.  T should be less than pw  (and px   
on the negative side of the normal distribution) for an upward trend, i.e. positive correlation 
with time, and T should be greater than pw  (and px  on the positive side of the normal 
distribution) for a downward trend, i.e. negative correlation (Conover 1971).   
 
Calculation of Spearman's Rho is illustrated in table 5.13.6 for age 1 abundance indices for 
cod from 1976 to 2004.  5586=T  which is greater than 5564=pw  with 96.1975.0 =x , 
implying that the downward trend for 1-year olds is significant at 025.0=α .  This is not as 
significant as was found with Mann-Kendall’s K which gave 018.0=α  but it is more 
significant than was found with the median test, 07.0=α .  The sequence of probabilities is 
roughly matched inversely by the work required to carry out the tests on a spreadsheet.  
Connover states that the normal approximation is better for Kendall’s tau than for 
Spearman’s rho with small sample sizes. 
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Table 5.13.6.  Spearman's Rho test applied to age class 1 from 1976 to 2004 for the abundance indices shown in 
table 5.13.1 illustrating the ranking (R) of years (y) and observed indices (a), and the computation of T. 

 
Year Age 1 

index 
Year rank Data rank (R(y)-

R(a))^2 
1976 7.9 1 15 196 
1977 36.7 2 28 676 
1978 12.9 3 21 324 
1979 9.9 4 19 225 
1980 16.9 5 26 441 
1981 2.9 6 7 1 
1982 9.2 7 17 100 
1983 3.9 8 11 9 
1984 15.2 9 25 256 
1985 0.9 10 2 64 
1986 17 11 27 256 
1987 8.8 12 16 16 
1988 3.6 13 10 9 
1989 13.1 14 23 81 
1990 3.4 15 8 49 
1991 2.4 16 4 144 
1992 13 17 22 25 
1993 12.7 18 20 4 
1994 14.8 19 24 25 
1995 9.7 20 18 4 
1996 3.5 21 9 144 
1997 40 22 29 49 
1998 2.7 23 5 324 
1999 2.1 24 3 441 
2000 6.6 25 12 169 
2001 2.8 26 6 400 
2002 7.8 27 14 169 
2003 0.6 28 1 729 
2004 7.537 29 13 256 
 Sum, T 5586 

 
 

8. Jonckheere’s test 
Jonckheere’s test  is a nonparametric version of a one-way analysis of variance with unequal 
sample sizes, except that it tests H: ‘no treatment effect’ versus the special alternative, A: ‘the 
treatments are ordered in effect’ (Hollander and Wolfe 1973, p. 120).  This can be applied to 
trends by equating observation times to treatments and then arranging them in the order 
implied by the possible trend so as to make a one-sided test.  Hypothesis A is then equivalent 
to a monotonic trend, as for Mann-Kendall’s K.  For a time-series of un-replicated 
observations, Mann-Kendall’s K is the conventional test to use.  However, if observations are 
independently replicated at some time points, the Mann-Kendall test is not clearly applicable 
and Jonckheere’s test can be applied instead.   
 
Let the number of observation times be k.  It is necessary first to find ( ) 21−kk  Mann-
Whitney counts uvU  where u and v are times of observation and kvu ≤<≤1 : 
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vu nn ,  are the numbers of observations at times u and v respectively, while ( ) 1, =baφ  if 
ba < , and 0 otherwise.  Be warned, this is an extensive job for large k using a spreadsheet.  

The test statistic, ∑ <
=

k

vu uvUJ , can be compared with table A.8 in Hollander and Wolfe 
(1973), or, when the minimum number of replicate observations at any point is large (?), can 
be transformed to J* which is approximately normally distributed:  
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.  As for Kendall’s test, this would be one-tailed.  H is rejected if J* exceeds the 

standard normal deviate at the required level of significance.   
 
Table 5.13.7 presents a fabricated set of data to illustrate computations for Jonckheere's test.  
Abundance indices for 1-year olds were arbitrarily re-assigned to a shortened series of 10  
years so as to create a set of replicate observations.  J was found to be 209 which together 
with the totals in the right 3 columns of table 5.13.7a gave J* = 0.8318 which is less than 
1.645, the standard normal deviate corresponding to 95% of the area under the normal curve.  
Not surprisingly, the arbitrarily re-arranged data did not show a significant monotonic trend. 
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Table 5.13.7.  Jonckheere’s test applied to abundance indices for cod of age class 1 from 1976 to 2004 taken 
from table 5.13.1 and arbitrarily assigned to a shortened series of 10 years with variable replication annually for 
illustrative purposes.  a) resulting test data and computation of terms for the test statistic; b) illustrating scoring 

for u = 1976 and v = 1977, 1978. 

 
a) 
Year Dummy replicate observations nj nj^2 nj^2*(2nj

+3) 
1976 7.9 17 3.5   3 9 81 
1977 36.7 8.8    2 4 28 
1978 12.9 3.6 2.7   3 9 81 
1979 9.9 13.1 2.1 40 7.8 5 25 325 
1980 16.9 3.4 6.6   3 9 81 
1981 2.9 2.4    2 4 28 
1982 9.2 13    2 4 28 
1983 3.9 12.7 0.6 2.8  4 16 176 
1984 15.2 14.8 7.537   3 9 81 
1985 0.9 9.7    2 4 28 
   Sum=> 29 93 937 
 
 
 
b) 

u = 1976 Replicate 1 Replicate 2 Replicate 3 
v = 1977 

Replicate 1 1 1 1 
Replicate 2 1 0 1 

v = 1978 
Replicate 1 1 0 1 
Replicate 2 0 0 1 
Replicate 3 0 0 0 

 
 

9. Permutation (randomisation) and bootstrapping methods 
Permutation tests are described in connection with benthic studies by Bell et al. (1981).  They 
are alleged to be more sensitive to trend than rank tests.  Let Y be the observed value, and t 
the time of observation, Tt ,...,1= .  Calculate 
 
    ∑=

t ttYh  
 
and compare with the !T  values of h* computed with the t values permuted.    Bell et al. state 
that if there is no change in Y over time, h is likely to fall near the middle of the range of h*, 
otherwise near one of the extremes.  Probabilities of h or values more extreme can be found 
because each permutation is equally likely.  Computation of all permutations may be an 
onerous and unnecessary task.  The sample() function in the R programming language 
readily produces random permutations that may suffice for building up a reference set for 
assessing probabilities.  The case for a randomisation test is likely to be strong when the 
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number of observations available is very small, e.g. less than 10.  Many other nonparametric 
methods then need access to special tables to estimate significance because the Central Limit 
Theorem can not be invoked satisfactorily to argue that test statistics are approximately 
normally distributed, as for Spearman’s rho and Mann-Kendall statistics for example.  Ties 
can further complicate application of competing nonparametric methods. 
 
Edgington (1995, p. 15) points out that “Parametric tests of all kinds, including relatively 
complex tests, . . . become distribution-free when the significance is determined by a 
randomization test procedure.”  Consider for example a least squares estimator of slope.  
Rather than assume that the observations at each time point were a random sample from 
some population and looking up the value of t or F for the slope based on that assumption, 
the observations and times are permuted to create a reference set of estimated t or F statistics, 
then the observed value is compared with the reference set and its statistical significance 
judged from the proportion of the reference set having a more extreme value.  Edgington 
describes several randomisation tests applicable to trends over treatment levels in randomised 
experiments but states (p. 217) “. . .randomization trend tests do not test hypotheses about 
trends; they simply utilize test statistics sensitive to trend which test the null hypothesis of no 
differential treatment effect.”  His view is possibly related to the focus on experiments in his 
book.  On the other hand, finding that an observed trend over time is unlikely by a 
randomisation test, even outside a randomised experiment, seems to be no less useful than 
finding it by means of other nonparametric tests.   
 
Bootstrapping observations could be another way of assessing the significance of observed 
trends, particularly for fisheries survey data for which abundance indices can be bootstrapped 
to estimate sampling and measurement errors (Beare et al. 2002) even though analytical 
formulae for variances are hard to derive or non-existent.  The trend would be fitted to each 
bootstrapped series and the distribution determined.  To be nonparametric, the estimates 
should be based on sampling theory and no model assumed.  The bootstrap is no less 
vulnerable than most other statistical methods to small numbers of observation times. 
 
There are subtle differences between bootstrapping and randomisation tests.  Bootstrapping 
uses a sample as a surrogate for the population and (re-)samples the sample with 
replacement.  A randomisation test of trend permutes observations to time points without 
replacement and without reference to the sampling process generating the observations.  
Bootstrapping empirically estimates the distribution of statistics assuming that the observed 
sample looks like the true population.  On the other hand, randomisation tests provide a form 
of statistical inference when the sample itself is assumed to be the total population of interest.  
When testing for trend in an environmental context, the quality of the sample appears to be 
just as important as for the bootstrap. 

10. Dietz and Killeen test for multivariate monotone trend (turquoise box) 
Dietz and Killeen (1981) derived a formula for the covariance matrix of Mann-Kendall 
statistics estimated from a multivariate monitoring programme, and proposed a test statistic 
based on it that is asymptotically distributed as 2χ .  Use of multivariate methods “controls 
the overall significance level” when multiple univariate tests are made with covarying 
observations, and there were very few cases in a study of lake water quality “where the 
univariate methods perform better” (Loftis et al. 1991b).  Multivariate methods appear to be 
especially applicable when monitoring groups of indicators expected to respond similarly to 
environmental changes of concern.  The Dietz and Killeen test has the same strengths as the 
Mann-Kendall test for discovering trends that are specifically monotonic.  An alternative but 
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related test when the aggregate trend of several variables is of interest, e.g. when correlated 
measures of one variable are made seasonally, was given by Hirsch and Slack (Hirsch and 
Slack 1984).  Comparisons of nonparametric methods with linear models in a multivariate 
context were made using simulation by Loftis et al. (Loftis et al. 1991a). 
 
Code in R (Mvar.trend.r) for the Dietz and Killeen test is available from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm; it was trialled with data given by Dietz 
and Killeen and found to give the same results.  Fig. 5.13.2 shows selected output from 
Mvar.trend.r applied to the cod abundance indices, ages 1 to 6, 1983 to 2004.  (About 2 
minutes were required for running; times increase roughly in proportion to the product of 

pn3 .) The first matrix shows the Mann-Kendall statistics.  Those along the diagonal are 
computed as for the univariate statistics; see section 5 above.  Those off the diagonal are 
 
   ( )( )[ ]∑

<

−−=
ji

ijijXY YYXXsignK  

 
where ( ) 1,0,1 −=xsign  for positive, zero, and negative values respectively.  XYK  is high and 
positive when both the X and Y variables are showing monotonic trends in the same 
direction, and high and negative when in opposite directions.  The second matrix, S, in box 
10 shows the covariances of these statistics calculated using formulae given in the appendix 
of Dietz and Killeen.  The third matrix shows the Spearman rank correlations of the observed 
values.  The highest correlations occur among the older age groups.  Note that although 
values along the diagonal of a correlation matrix are normally 1, some here are less than 1 
due to tied values within the time-series.  The test statistic, 09.25=− KSK 1T  is compared 
with 2χ  with 6 d.f. (all age classes contribute to d.f. since no parameters are estimated) and 

found to be highly significant, 548.18;005.0 2 =< χP .  The standardised K for each age 
class and their standard errors are shown below.  This is the same information that would 
come from testing each age class separately.  Examination of them when the multivariate null 
hypothesis is rejected should indicate which of the age classes was responsible (Loftis et al. 
1991b).  For 1-sided tests, standardised K greater in magnitude than 1.64 are likely to be 
contributing to the significance of the multivariate result.  The results suggest that all except 
1-year olds are contributing. 
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Figure 5.13.2.  Output from Mvar.trend.r applied to cod abundance indices for ages 1 to 6 from 1983 to 2004 
given in table 5.13.1.  $Kxy is Matrix of Kendall stats (K), age1 to 6; $S is covariance matrix of K; 

$Spearman.corr is the rank correlation matrix of the abundance indices; $Standardised.K  is K from diagonal of 
S (above), divided by $St.error.K (last row).   Some rows of output are omitted to save space. 

 
 

>Mvar.trend(IBTS.indices)  
$Kxy   

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 0 0 0 0 0 0 0
[2,] 0 -45 -2 12 32 11 22
[3,] 0 -2 -72 -31 27 34 27
[4,] 0 12 -31 -60 -13 52 66
[5,] 0 32 27 -13 -74 16 91
[6,] 0 11 34 52 16 -97 95
[7,] 0 22 27 66 91 95 -166

   
$S   

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 0 0 0 0 0 0 0
[2,] 0 1257.667 29.33333 108.6667 249.3333 61.66667 140

[3,] 0 29.33333 1256.667 -155 206.3333 309 232.3333
[4,] 0 108.6667 -155 1254 -90.3333 394 475.3333
[5,] 0 249.3333 206.3333 -90.3333 1248 106.6667 662

[6,] 0 61.66667 309 394 106.6667 1215 724.6667
[7,] 0 140 232.3333 475.3333 662 724.6667 1232.667

   
$Spearman.corr  

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 0 0 0 0 0 0 0
[2,] 0 1 0.025409 0.08865 0.202146 0.049125 0.112366
[3,] 0 0.025409 0.999435 -0.12253 0.167137 0.252117 0.189159
[4,] 0 0.08865 -0.12253 0.997741 -0.07284 0.319029 0.383964
[5,] 0 0.202146 0.167137 -0.07284 0.994353 0.085827 0.535009
[6,] 0 0.049125 0.252117 0.319029 0.085827 0.971203 0.586957

[7,] 0 0.112366 0.189159 0.383964 0.535008 0.586957 0.98419
   

$Standardised.K  

[1] -1.26891 -2.03106 -1.69435 -2.09471 -2.78281 -4.72809 
   

$St.error.K  

[1] 35.4636 35.44949 35.41186 35.32704 34.85685 35.10935 

 



 

 123

References 
Beare, D., Castro, J., Cotter, J., van Keeken, O., Kell, L., Laurec, A., et al. (2002)  Evaluation 
of research surveys in relation to management advice (EVARES).  Final report. DGXIV 
Fisheries, European Commission, Brussels.  FISH/2001/02 - Lot 1. Available from 
a.j.cotter@cefas.co.uk 
 
Bell, C.B., Conquest, L.L., Pyke, R. and Smith, E.P. (1981)  Some nonparametric statistics 
for monitoring water quality using benthic species counts.  Environmetrics, selected papers, 
SIAM, Philadelphia 8, 100-120. 
 
Brownlee, K.A. (1965)  Statistical theory and methodology in science and engineering.  2nd. 
edn., John Wiley & Sons, New York 
 
Cochran, W.G. (1950)  The comparison of percentages in matched samples.  Biometrika 37, 
256-266. 
 
Conover, W.J. (1971)  Practical nonparametric statistics., John Wiley & Sons, New York 
 
Cotter, A.J.R. (1985)  Water quality surveys: a statistical method based on determinism, 
quantiles and the binomial distribution.  Water Research 19, 1179-1189. 
 
Cotter, A.J.R. (1994)  Compliance testing of two or more water quality determinands using 
quantiles.  Environmetrics 5, 29-45. 
 
Dietz, E.J. and Killeen, T.J. (1981)  A nonparametric multivariate test for monotone trend 
with pharmaceutical applications.  Journal of the American Statistical Association 76, 169-
174. 
 
Edgington, E.S. (1995)  Randomization tests.  3rd. edn., Marcel Dekker, Inc., New York 
 
El-Shaarawi, A.H. (1993)  Environmental monitoring, assessment and prediction of change.  
Environmetrics 4, 381-398. 
 
El-Shaarawi, A.H. and Niculescu, S.P. (1992)  On Kendall's Tau as a test of trend in time 
series data.  Environmetrics 3, 385-411. 
 
Esterby, S.R. (1993)  Trend analysis methods for environmental data.  Environmetrics 4, 
459-481. 
 
Hirsch, R.M. and Slack, J.R. (1984)  A nonparametric test for seasonal data with serial 
dependence.  Water Resources Research 20, 727-732. 
 
Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982)  Nonparametric tests for trend in water 
quality.  Water Resources Research 18, 107-121. 
 
Hollander, M. and Wolfe, D.A. (1973)  Nonparametric statistical methods., John Wiley & 
Sons, New York 
 
Kendall, M.A. (1976)  Time-series, Charles Griffin and Co. Ltd., London 



 

 124

 
Lettenmaier, D.P. (1976)  Detection of trends in water quality data from records with 
dependent observations.  Water Resources Research 12, 1037-1046. 
 
Loftis, J.C., Taylor, C.H. and Chapman, P.L. (1991a)  Multivariate tests for trend in water 
quality.  Water Resources Research 27, 1419-1429. 
 
Loftis, J.C., Taylor, C.H., Newell, A.D. and Chapman, P.L. (1991b)  Multivariate trend 
testing of lake water quality.  Water Resources Bulletin, American Water Resources 
Association 27, 461-473. 
 
Mann, H.B. (1945)  Nonparametric tests against trend.  Econometrica 13, 245-259. 
 
Nicholson, M.D. and Fryer, R.J. (1992)  The statistical power of monitoring programmes.  
Marine Pollution Bulletin 24, 146-149. 
 
Pettitt, A.N. (1979)  A non-parametric approach to the change-point problem.  Applied 
Statistics 28, 126-135. 
 
Prins, J. (2006). "NIST/SEMATECH e-Handbook of Statistical Methods." from 
http://www.itl.nist.gov/div898/handbook/prc/section4/prc473.htm. 
 
Swed, F.S. and Eisenhart, C. (1943)  Tables for testing randomness of grouping in a sequence 
of alternatives.  Annals of mathematical statistics 14, 66-87. 
 
Van Bell, G. and Hughes, J.P. (1984)  Nonparametric tests for trend in water quality.  Water 
Resources Research 20, 127-136. 
 
Yu, Y.-S., Zou, S. and Whittemore, D. (1993)  Non-parametric trend analysis of water 
quality data of rivers in Kansas.  Journal of Hydrology 150, 61-80. 
 
Zetterqvist, L. (1991)  Statistical estimation and interpretation of trends in water quality time 
series.  Water Resources Research 27, 1637-1648. 
 
 

 



 

 125

5.4 Construction of multivariate indicators.  

5.4.1 Principal Components Analysis (PCA) and biological 
indicators 
Pierre Petitgas, 
IFREMER, Nantes, 
France  

Introduction 
For each survey, a variety of indices of stock attributes are usually estimated. A multivariate 
monitoring procedure is then potentially more efficient than procedures based on the analysis 
of a collection of univariate monitoring charts as the multivariate analysis will make coherent 
use of the relationships between the many indices of stock attributes. Here we suggest 
application of PCA to the Fisboat biological indicators (abundance indices, length indices 
and mortality index) and represent the evolution of the stock by a multivariate distance to a 
reference gravity centre. Clearly, abundance and length indices are potentially related and 
more consistency can be obtained by explicitly using these correlations. But the method will 
not take into account any correlations in time between indicators, in particular lagged effects 
of one indicator on another.  

Method 
Consider an array where for each line (observation) we have a vector of measurements for a 
variety of parameters (variables). Measured values of variables are in columns and each line 
is one observation (here in time). The variables can be correlated between each others. PCA 
constructs linear combinations of variables (factors) that are non correlated between each 
other and that best account for the variability in the data array. Mathematically, this is done 
by diagonalising the correlation matrix of the variables. Eigen vectors geometrically support 
principal components. These are ranked by their decreasing importance of data variance 
explained. The geometrical properties of the method enables representation of the correlation 
structure among the variables as well as the position of each observation in the space of the 
principal components (factorial space). The correlation between two variables (variable - 
variable or variable - principal component) is represented by the angle between vectors. The 
similarity between observations is represented by their Euclidean distance in the factorial 
space. It is usual to analyse correlation between variables and similarity between 
observations in a factorial sub-space made by a reduced number of principal components. 
These are the first principal components that account for a large percentage of the data 
variance (e.g., 80%). Such reduction corresponds to filtering variability in the data assumed 
to be noise. The few retained non correlated factors then summarise the multivariate structure 
of the data. PCA (e.g., Lebart et al., 1995) is a widely used technique in many fields 
including marine ecology that was first developed more than fifty years ago.  

Software 
The R code available from the FISBOAT web site, 
http://www.ifremer.fr/drvecohal/fisboat/index.htm, is pcachart.R. It is commented. It uses the 
R library ade4 (Chessel et al., 2006) for performing the PCA. The PCA is applied to the 
Fisboat Table 2 of biological (non spatial) indicators. A set of reference years is defined, in 
which the population is considered in acceptable health status. The PCA is performed giving 
high weight to the set of reference year observations (99.9%). In that way, the factorial space 
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is not affected by years outside the reference period: years outside the reference period play 
the role of passive variables that are projected in a reference factorial space. First the 
decrease in the eigen values is illustrated. Then the correlation structure in the indicators is 
illustrated using the first three principal axes and the loadings of the indicators on these are 
provided in a table. This allows to interpret the principal axes. Then the similarity between 
years is illustrated by positioning the years in the plane made by the first two principal axes. 
On the figure, the reference period years are marked by a symbol while the non reference 
years to be monitored are labelled by their number. A multivariate distance in each year is 
then calculated, which quantifies the deviation of that year to the gravity centre of the 
reference years, and is saved with the name mdbio. The multivariate distance is the euclidean 
distance between the position of any year p(y) and the gravity centre of the reference years 
cref: );(2

refyy cpdd = .  
 
Inputs are : Table 2 (from the FISBOAT web-site) of biological non spatial indices, years to 
consider as reference period, number of principal PCA axes to consider for computing the 
multivariate distance mdbio. Outputs are: a figure representing the decrease in eigen values, 
figures illustrating the correlation structure between variables, correlation table of the 
variables on the PCA axes (loadings), the time series of the mdbio multivariate distance as 
well as its histogram.  

Example 

North Sea cod 
PCA can be used to set up a multivariate monitoring approach of stock status using the many 
indicators of biological stock attributes available for North Sea cod, see tables 1 and 2 at 
http://www.ifremer.fr/drvecohal/fisboat/. Because the indicators are correlated to each other, 
PCA is useful to summarise the correlation structure between the parameters and reduce the 
dimensionality of the monitoring scheme using a small number of non correlated factors. The 
monitoring approach will then take place in the factorial space composed of the first two (or 
more) principal axes. A reference domain in that factorial space (in-control domain) can be 
defined based on the position of reference years in that factorial space. The definition of 
reference years is analogous to monitoring a process when it is in-control: the reference year 
period is the set of years where the stock could be considered in acceptable health. The 
multivariate monitoring approach compares the current year vector of stock indicators to that 
of the reference period. It is therefore suggested to estimate the gravity centre of the 
reference years and, for each year, to calculate the distance to that reference gravity centre. 
The time series of the multivariate distance then summarises the deviation of the population 
biological characteristics from its reference status.  
 
Fisboat table 2 of biological non spatial indicators comprises the year observations as lines 
and the columns as variables. It is a typical set for input to a PCA. The PCA will display the 
correlation structure between indicators (abundance, length, mortality) and will allow 
quantification of which years depart from the others, not just because of one indicator but as 
a whole in their multivariate characteristics.  
 
Reference years are 1985-1994. Figure 5.10.1 illustrates the correlation structure in the 
biological indicators. Length50 at maturity heavily determines the first principal axis. The 
second is determined by total abundance and the opposition between total abundance and 
length at the third quartile (L75). The third axis is determined by mortality (Z) which is 
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hardly correlated with any other indicator. Overall, length indices and abundance indices are 
correlated. Figure 5.10.2 illustrates the multivariate monitoring approach. Years 1997, 1999, 
2003-2005 are well outside the domain defined by the reference years, meaning that they 
depart largely from the reference status. The direction of departure is on the first and second 
axes meaning that departure is primarily guided by changes in abundance and length at 
maturity. This is quantified by the multivariate distance on which a statistical monitoring 
scheme can then be applied.   
 
 
 

  
Figure 5.10.1. Correlation structure between the biological non spatial indices (Fisboat Table 2) for North Sea 

cod. Left: principal axes 1 and 2; right: principal axes 1 and 3. 

 

 
Figure 5.10.2. Monitoring North Sea cod in the factorial sub-space of the two first principal axes using the 

biological non spatial indicators (Fisboat Table 2). Left: representation of years in the factorial sub-space (the 
black diamonds are the reference years); right: the time series of the multivariate distance representing the 

deviation of the stock from its reference status.  
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5.4.2 Multi-factorial analysis (MFA) and spatial indicators 
Pierre Petitgas, Jean Charles Poulard.  
IFREMER, Nantes, France. 

Introduction  
MFA is a multi-table analysis method (Escoffier and Pagès, 1994 ; Dazy and Le Barzic, 
1996) extending PCA methodology (Principal Component Analysis) to the analysis of 3D 
structured data. In particular, MFA is designed for cases where the same variables (data 
matrix columns) are measured for the same individuals (e.g., stations : data matrix rows) at 
various times (third dimension of the data structure). The method allows the construction of a 
unique factorial space in which to represent each data matrix for each time, each variable and 
each individual. This unique factorial space is a compromise space that best matches that of 
each data matrix at each time.  It allows extensive tables of data to be represented pictorially 
in such a way that groupings among variables in space and time are readily identifiable. 
 
The method has been applied in fisheries science to characterise seasonal and inter-annual 
variation in fish community structure (Gaertner et al., 1998), fishing activity (Poulard and 
Léauté, 2002), as well as common structure between trophic levels (Petitgas et al., 2006). It 
has been used in FISBOAT for summarising the average life cycle spatial organisation 
(Woillez et al., in press). Here we suggest a measure of inter-annual variation in that pattern 
and an R code for doing so. 

Method 
The method proceeds in two steps. First a PCA is performed on each data matrix. Then each 
variable at each time is weighted by the inverse of the first eigen value of that matrix. Then a 
general matrix is constructed that contains all the weighted variables in columns and the 
individuals as rows. The PCA of that general matrix constructs the MFA compromise 
factorial space. Its principal axes are interpretable using the correlation of the variables to 
them. The interest in the method is the construction of a compromise factorial space in which 
to represent the 3D structure of the data : each individual is represented by n points (n 
repetitions in time) as well as by its gravity centre (average position in the compromise 
factorial space).  

Software 
The R code available from the FISBOAT web site, 
http://www.ifremer.fr/drvecohal/fisboat/index.htm, is dmul_mfa.R. It is commented. It uses 
the R library ade4 (Chessel et al., 2006) for performing the MFA. Using the Fisboat Table 1 
of spatial indicators [http://www.ifremer.fr/drvecohal/fisboat/] as input, the code will produce 
a figure representing the life cycle spatial pattern in the two first principal axes of the MFA 
space. On the figure, each point represents a particular age in a particular year. The average 
position for each age is labelled. A multivariate distance is built quantifying in each year the 
deviation from the average. This distance, named dmul, is the sum over the ages of the 
distance between the yearly position of each age p(a,y) and its gravity centre c(a): 

∑=
a

ayay cpdd );( ,
2 .  The code also provides as output a table of the number of times the 

correlation between each spatial indicator and the MFA axes is greater than 0.5, allowing 
interpretation of the axes. The output result is the times series of the multivariate dmul 
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distance, which characterises the inter-annual variation around the average spatial pattern of 
the life cyle.  
 
The position of each age in each year p(a,y) is computed by applying MFA to all years. The 
age-specific gravity centres relative to which deviations are referenced are calculated 
considering reference years only, that must be provided as input. The gravity centre for each 
age is the average position of each age specific point in the MFA space for the years of the 
reference period.  
 
Inputs are : Table 1 of spatial indices, years to consider as the reference period, and the 
number of principal MFA axes to consider for computing the distance dmul. Outputs are a 
figure representing the life cycle pattern in the MFA space, correlation tables of the variables 
with the MFA axes, the time series of the dmul distance as well as its histogram.  

Example 

North Sea cod 
The life cycle of any fish population is organised in space because the fish will occupy 
different habitats at different life stages. Therefore, the young and the old can be expected to 
show different characteristics in their spatial distribution. The spatial indicators developed in 
Fisboat have been applied to survey numbers-at-age for a series of years. They thus 
characterise the fish distributions at age in different years. In each year, the matrix made of 
the spatial indicators in columns and the ages in rows describes the life cycle pattern of the 
population in that year. In the MFA compromise space, the cloud of points of the 
compromise individuals represents the average life cycle pattern. In general, structure in the 
data is strong and the first two principal axes are explained at least by location and 
aggregation indicators, meaning that there is a change with age in the location and 
aggregation of the fish. MFA is then used to describe these patterns and their inter-annual 
variation. In particular, the departure of individual points in each year from the average cloud 
represents inter-annual variation in the life cycle organisation. An R code has been developed 
to calculate such variation.  
 
Reference years are 1985-1994. Fig. 5.11.1 illustrates the structure in the spatial organisation 
and fig. 5.11.2 illustrates the monitoring of the deviations from the mean reference structure. 
Each point on fig. 5.11.1 (left) represents the position of a given age and year in the MFA 
factorial sub-space of the first two principal components. The age labels identify the mean 
position for each age for the reference years, materialising the reference life cycle spatial 
organisation of North Sea cod. In effect, marked and progressive differences exist across 
ages. The table on fig. 5.11.1 (right) summarises the correlation structure in the spatial 
indicators. The first component is determined by having a larger area occupied, a centre of 
gravity more to the north and west, higher inertia (dispersion), and a lower nugget effect. The 
second component is determined by having a centre of gravity more to the north, higher 
anisotropy and a smaller positive area. Marked and progressive differences in the spatial 
distribution of ages are shown on fig. 5.11.1 (left), which characterise the life cycle spatial 
pattern of North Sea cod. Young (A1) and old ages (A5-6) differ on the first component from 
intermediate ages (A2-4). Spatial distributions of young and old ages are more to the east, are 
less dispersed, occupy a smaller area, and have a higher nugget effect than that of 
intermediate ages, which are more to the west, more dispersed, occupying larger areas and 
with smoother correlation. Age 1 and Ages 5-6 differ on the second principal component by 
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the location of their centre of gravity and anisotropy.  The spatial distribution of old ages is 
more to the north, is more anisotropic, and occupies a smaller area than that of the age 1 fish.  
 
In order to monitor the departure of all the ages from the reference mean spatial organisation, 
the multivariate distance dmul was calculated (fig. 5.11.2): in each year the distance between 
the age reference point (labelled) and the current year’s point (black dot) was calculated and 
summed over the ages. Ages 4 and 5 show some elongation in the direction of departure from 
their reference, meaning that these ages tend to show a systematic change, namely a 
reduction in area occupied and a more northerly centre of gravity. This is quantified by the 
multivariate distance on which a statistical monitoring scheme could be applied. 
 
 

 d = 0.5 

 A1 

 A2 

 A3 

 A4 

 A5  A6 

PC1 PC2
PositiveArea 12+|0- 0+|16-
Inertia 12+|2- 1+|2-
Anisotropy 0+|2- 15+|0-
xcg 0+|17- 4+|4-
ycg 13+|0- 15+|0-
MicrostructureI 1+|11- 3+|3-
EquivalentArea 12+|0- 1+|2-
SpreadingArea 18+|0- 0+|7-  

 
Figure 5.11.1. Left: MFA representation of each age in each year (points) relatively to the age gravity centre. 

Right: Spatial indicators that are the most correlated to the first two principal axes 
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Figure 5.11.2. Monitoring North Sea cod in the sub-space of the two first principal MFA axes using the spatial 

indicators (Fisboat Table 1) : time series of the multivariate distance representing the deviation of the stock 
from its reference spatial distribution all ages considered. 
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5.4.3 Min/Max autocorrelation factors (MAFs) and time continuity 
Woillez M., Rivoirard J. 
Centre de Géostatistique, Armines/Ecole des Mines de Paris,  
Fontainebleau, France. 

What are MAFs? 
Min/max autocorrelation factors (MAFs) are a multivariate statistical method, having 
similarities with the classical Principal Components of PCA when analyzing repeated values 
taken by a set of variables. When applied to a time series, the MAFs allow the set of initial 
variables to be decomposed into factors, the autocorrelation of which decreases from the first 
factors to the last ones (or more generally, the variogram – half variance of increments – of 
which increases from the first factors to the last ones). Hence the very first factors extract the 
part of the variables which is the most continuous in time.  A recent application of MAFs in a 
fishery context was reported by Erzini et al. (2005). 
 
Some details are now provided, beginning with PCs. The PCs are linear combinations of the 
original variables, each of them explaining a decreasing part of the variability present in the 
values (these values can be seen as a cloud of points in the space having the initial variables 
as coordinates; the cloud is centered on the means of the variables, and we are interested in 
the variability of the cloud around its center, which corresponds to the centered variables). 
The PCs are uncorrelated with each other. The 1st component explains the highest part of the 
variability (it corresponds to the direction of maximal variability of the cloud). The 2nd 
component explains the second highest part of the variability, while being uncorrelated to the 
1st one (it corresponds to the direction of maximal variability of the cloud, while being 
orthogonal to the first direction), and so on. Then the set of variables can be decomposed and 
represented by these uncorrelated PCs, and they can be summarized by selecting the often 
few PCs that explain most of the variability of the cloud. 
 
Note that the PCs depend on the magnitude of the values taken by the different variables, and 
then on the unit used for each of them. Because the different variables may be of different 
nature, with different and conventional units, PCA is very often performed on the normed 
variables (i.e. having the variance of each variable set to 1). 
 
PCA is well suited to the case where the repeated values of the variables are independent. In 
case of repetition in time (time series) or in space, the PCs are uncorrelated with each other at 
the same time (or location), but may be correlated between different times (or locations), 
making the representation of the variables by the factors (the PCs) less appropriate. 
 
The MAFs, which are also linear combinations of the original variables, and have a variance 
of 1, offer a better representation of variables distributed in time or space: in addition to 
being uncorrelated with each other at the same time (or location), they are uncorrelated with 
each other for a given time (or space) lag (taken equal to the sampling lag in practice). 
Moreover they are computed with the aim of: (1) presenting the highest autocorrelation (or 
smallest variogram) at this lag for the 1st MAF; (2) then presenting the second highest 
autocorrelation at this lag, while being uncorrelated with the 1st MAF, for the 2nd MAF. Etc. 
Hence, in a time series, the MAFs offer a way to build the combinations of variables which 
present the maximal continuity in time (as measured at the lag) for the first MAFs, and the 
minimal continuity for the last MAFs.  
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Note that the MAFs depend on the chosen computation lag and may be correlated with each 
other for other lags. Note also that the MAFs do not depend on a possible normalisation of 
the initial variables.  
 
From a technical point of view, the MAFs are the solution of a generalized eigenvalues 
problem. This can be simplified into a simple eigenvalues system in the case where the 
variables are uncorrelated with each other at the same time (or location). Hence MAFs can be 
obtained by solving two simple eigenvalue systems: one to transform the initial variables into 
PCs, the other to obtain the MAFs from the increments of PCs at the computational lag (by 
maximizing/minimizing the variance of increments, i.e. minimizing/maximizing the 
autocorrelation). 

The MAFs in Fisboat 
In Fisboat (work package WP2A), a set of spatial indices were selected to represent a target 
spatial population over its time series. The estimated indices presented notable variations in 
time. These may have been due to actual variations but also to various errors. MAFs can be 
used to extract from the set of indices the very first factors, that present the maximal 
continuity in time, and that can be thought to be used for a follow-up of the population in 
time. 
 
Note: Here the continuity in time is measured at the lag of the time series: for instance a lag 
of 1 year if there is a survey every year, or the varying lag between successive surveys if 
there are gaps. 

The interpretation of the MAFs 
The very first MAFs (typically MAF1 and 2) allow us to extract trends in the multivariate 
time series of a set of indices. A jump upwards or downwards in the trends can be interpreted 
as a change in the spatial pattern of the considered age or functional group. Loadings informs 
us about the contribution of each index in the observed trends. Such an index can be used in 
an indicator approach to qualify a component of stock status (e.g. the spatial component). 
Moreover, correlation and delayed correlations allow us to put in relation MAFs and the 
abundance. 

The limits of the MAFs 
The number of MAFs cannot exceed the number of variables, nor the number of year 
increments (number of sampled years - 1). If the number of variables tends to be larger than 
the number of sampled years, the MAF n° i (i = 1, 2...) tends to have a period (number of 
years - 1)*2/i. In particular there will be evidence of a high continuity with period (number of  
years -1)*2 for MAF1, (number of years -1) for MAF2, etc, whatever the data, which may 
not be significant outside this series e.g. for additional years.  
 
To prevent such an overfitting to the very detailed values of the variables, and so to increase 
the significance of the MAFs, these are computed while adding a repeated random noise to 
the variables. The noise, which is function of the number of variables and years, vanishes 
when the time series is longer. 

Software 
An R script has been written, MAF_noise_script_WP5.R, in which the solution of MAFs is 
obtained from a double call to the PCA standard routine prcomp(). In the first call, PCs are 
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determined from the initial variables. In the second call, MAFs are computed from the 
increments of the PCs at the time lag.  
 
MAFs are computed for each of 100 realizations where a random noise is added to the 
centered and normed indices. The random noise follows a Gaussian distribution with mean 0 
and variance 0.1 * (nb.indices / (nb.years - 1)). For each resulting MAF, the 100 values of the 
loading of each index are available. Their distribution is symmetric. The median of the 
loading values (which is more robust than the mean) is used to determine the median MAFs 
profile. 
 
The MAFs that present the lowest variogram (half variance of increments) at the lag are 
retained finally. By default the two first MAFs are retained. (Note: since each MAF has a 
variance of 1, it can be shown that a small value for the variogram at short time lags is 
compensated by some large values at larger time lags. This explains the large variogram 
values at large time lags that can be found for the first MAFs). 

Output per age or functional group for a target spatial population: 
For each retained MAF, coming from the 100 realizations: 

• the median MAF time series; 
• the median MAF variogram; 
• the contribution (median of the loading coefficients) of each initial index into the 

median MAF. 
 
For each retained MAF: 

• the median MAF time series; 
• the times series of the log of the abundance; 
• the regression between the median MAF and the log of the abundance; 
• the delayed correlation between the median MAF and the log of the abundance. 

Important remark on the sign of MAFs: 
Like a PC, a MAF is equivalent to its opposite (= the MAF with changed sign, that would be 
obtained by changing the sign of each coefficient of its linear combination), since the unit 
variance and the variogram at the computation lag would be unchanged. Then a MAF that 
would be monotonic over a time series can indifferently appear to be increasing as well as 
decreasing. Similarly a MAF with an extremum in the middle of a time series could 
indifferently present a maximum or a minimum. 
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5.5 Diagnosing stock status from indicator series.  

5.5.1 Combining trend signals using a cause-effects table 
Verena M. Trenkel, Marie-Joëlle Rochet and Benoît Mesnil 
Ifremer, Nantes, France 

Introduction 
This method provides guidance for an interpretation of time trends in indicators of the 
biological status of a stock derived from survey data (Gangl and Pereira 2003; Rochet and 
Trenkel 2003; Ault et al. 2005), and indicators of fishing pressure derived from knowledge of 
the fishery. Trends are interpreted relative to a past reference period.  The aim is to estimate 
the current state of a stock of interest with respect to management objectives.  A fuller 
account of the method together with a practical example of its application is given by Trenkel 
et al. (2007). 

Method 
At the preliminary stage, managers define operational objectives, for example, to obtain 
landings at a certain level, or individuals of a certain average size.  Meanwhile, scientists and 
stakeholders decide upon a suite of indicators suitable for monitoring the stock and the 
fishery, possibly using the multi-stage framework proposed by Rice and Rochet (2005). 
Secondly, scientists examine estimated values of the selected indicators together with reports 
of any other studies that pertain to the stock at some time in the past, called the reference 
state, most probably the starting year of a survey time series.  They then categorise the stock 
as having been either ‘satisfactory’ or ‘unsatisfactory’ for each indicator at that time.  
Thirdly, changes in indicator values after this reference time are estimated, interpreted, and 
combined into a diagnostic that highlights possible causes of the changes observed.  Finally, 
this diagnostic is considered with the managment objectives, indicators of fishing pressure, 
and past experience of managing the fishery in order to decide appropriate managerial 
actions. 
  
In more detail, having selected a suite of suitable indicators, there are several steps: 

1. Select the reference time and calculate time series of indicators. 
2. Determine time trends and status for each indicator in the current year. 
3. Evaluate any other relevant information and combine the results of different 

indicators to provide an interpretation of the changes observed. 
4. Agree a final diagnostic, including possible causes. 
5. Determine trends in fishing pressure and propose appropriate management actions in 

the light of the diagnosis and stated management objectives. 
 
For step 2, time trends in population indices from the reference year to the current year allow  
the current population dynamics to be assessed with respect to the reference situation. 
Uncertainty and natural variability in the survey data are accommodated through a hypothesis 
testing framework. A hypothesis test involves two risks of error, the type-I error of detecting 
a trend when none occurs, and the type-II error of not detecting a real trend. Whereas the α-
level of the type-I error can be selected, the probability of type-II errors is generally not 
known, but it increases as the α-level decreases. Clearly there is a trade-off here between the 
type of error that is to be most avoided, so the selection of α-levels in hypothesis tests for 
time trends is a task for managers of the fishery. Time trends over the whole series provide 
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estimates of longer term changes while trends over a more restricted number of years can 
inform on recent changes. Generally at least five years of data are required to be able to 
detect linear trends, in many cases, however, much longer series (>20 years) are necessary 
due to the high uncertainty and large random inter-annual variations in population indices 
(Nicholson and Jennings, 2004). The choice of the management time scale is clearly a 
decision for managers. Even with a multi-annual approach it is desirable to detect drastic 
changes in order to take rapid measures if necessary. For this, a choice of methods is 
available, as described elsewhere in this FISBOAT manual, e.g. CUSUM charts (Mesnil and 
Petitgas), and the method of second derivatives (Trenkel). For certain indicators reference 
points may exist, for example Z* for the total mortality rate (Die and Caddy, 1997) which 
can be used to evaluate directly the status of an index in the current year. The final aim of 
step 2 is to determine the direction of the most recent changes for each indicator, i.e. 
decreasing, stable or increasing. 
 
Step 3 involves combining the results of several population indices. One well known method 
is the traffic light approach put forward by Caddy and others (Halliday et al. 2001; Caddy 
2002). Depending on how many indicators are red, i.e. in an undesirable state, the overall 
assessment is set. For this approach the different indices take equal weights but they could 
just as well be weighted based on some a priori criteria. Rochet et al. (2005)proposed an 
alternative approach based on combining population and community indicators according to 
their biological meaning.   Step 3 should also involve consideration of biological information 
additional to that provided by the indicator series (e.g. recruitment estimates, mean weight-
at-age) in order to clarify the likely causes of the changes observed.  Investigation of time-
trends in indicators for fishing pressure (Piet et al. 2007) such as days-at-sea, fishing 
mortality, and quantities landed and discarded will allow corroboration of whether changes in 
fishing pressure could have been the major cause, before stating the final diagnosis (step 4). 
 
The last step is to propose possible managerial measures linked to the diagnoses.  The 
proposals should depend on whether the reference state was considered satisfactory or not, 
and whether fishing pressure increased since the reference year.  The advice provides the 
direction of appropriate measures rather than prescribing them in quantitative terms, leaving 
the final decision to managers who should be guided by past experience. 

Example 
Here we apply this approach to an imaginary case of five population indicators: total 
mortality (Z), log-transformed abundance ln N, mean length L , and length quartiles L25% and 
L75% .   Table 5.4.1 shows the increasing or decreasing effects (shown with arrows) that the 
most relevant factors are expected to have on each indicator. We assume that its long term 
time trend from the reference year to the current year has been categorised as either 
increasing, stable or decreasing. Using the method proposed by Trenkel (2006), the sign of 
the recent time trend for ln N is also obtained. Table 5.4.2 is then used to determine which 
time trends, short or long term, are used in table 5.4.1.  Depending on agreement or not 
between long and short term trends in ln N, the estimated category of the short or long term 
trends determines which trend is used. The latter case occurs if a recent increase in ln N can 
be explained by recent management measures that reduce fishing while the long term trend is 
decreasing. Note that table 5.4.1 only considers single causes and not the expected effects of 
combined causes such as reduced recruitment and increased fishing. In certain cases 
additional information such as recruitment estimates, should be sought in order to clarify the 
causes of the observed changes. Thus, in the proposed approach, biological knowledge is 
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used to point at the possible causes behind the observed changes, at least as far as being able 
to say whether increased fishing pressure could have contributed.  
 
The last step consists of proposing possible managerial measures.  The last column of table 
5.4.1 makes suggestions for mitigating measures based on whether the reference state is 
considered to be impacted by fishing (1), or satisfactory (2).  As the diagnosis is qualitative, 
so are the managerial measures. The direction rather than a prescribed amount of treatment is 
proposed. The quantitative decision is left to the managers. The adaptive management 
approach advocated in the 1980’s by Walters (1986) seems a natural choice for implementing 
qualitative management advice, with a careful monitoring of response to the chosen policy 
being fed into the process for the next time step. The listed measures are by no means 
exhaustive and are only intended to give a flavour of the kind of advice that could be 
proposed.  
 

Table 5.4.1: Expected effects of different causes on selected indicators and possible mitigation measures for 
counterbalancing changes. Δ stands for change, ⎯ for no effect,  for increasing and  for decreasing. 

Population indicators: Z = total mortality, ln-N = log-transformed total abundance, Lbar = mean length, L25% and 
L75% = length distribution quartiles. 

 
Cause Z ln N L-bar 

 
L25% L75% Mitigation measure 

1 = impacted reference state 
2 = satisfactory reference state 

 fishing mortality 
 
 

   ⎯  1 & 2 : −ΔF: reduction in overall 
fishing mortality 

 fishing mortality 
 
 

   ⎯  1: status quo 
2: +ΔF allowed  

 recruitment 
 
 

⎯    ⎯ 1: status quo 
2: +ΔTAC: increase in TAC   

 recruitment 
 
 

⎯    ⎯ 1 & 2: −ΔTAC: reduction in TAC  

Faster growth ⎯ ⎯  ⎯  1: status quo 
2 : Δselection pattern: decrease 
selectivity to smaller sizes 

Slower growth 
 
 

⎯ ⎯  ⎯  1 & 2: Δselection pattern: increase 
selectivity to larger sizes 

Larger fish caught (Δ fishing  
area, stock distribution or 
gear) 

   ⎯  1: status quo  
2: Δselection pattern: decrease 
selectivity to smaller sizes 

Smaller fish caught (Δ fishing  
area, stock distribution or 
gear) 
 

    ⎯ 1 & 2: Δselection pattern: increase 
selectivity to larger sizes 
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Table 5.4.2. Table for determining whether 'long term' or 'recent term' trends are used in table 5.4.1.  If recent 
time trends are used, the reference state at the beginning of the recent period needs to be used! 

 
 

Recent trend in ln N Long term 
trend in ln N  ⎯  

 long term long term recent term 

⎯ long term recent term 

 

if recent management 
measures intended to  
decrease fishing: continue 
else: as for long term  

long term long term 
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5.5.2  A 'traffic light' procedure based on Cusum out-of-control 
tables. 
Pierre Petitgas, 
IFREMER, Nantes, 
France  

Introduction 
Usually, more than one indicator is used to assess the status of a fish stock.  The important 
question then arises of how to combine the various results into a single assessment. One 
simple, illustrative way of doing so is to use a 'traffic light approach'  (Caddy et al., 2005).  
An alternative approach is that of multivariate statistical process control. Both are 
complementary as the CUSUM diagnostic table with all indicators may assist interpretation 
of multivariate alarm signals.  Part II (section 5.9) of this 2-part section illustrates the 
multivariate statistical approach. 

Example 
To illustrate, a CUSUM procedure (see Mesnil and Petitgas elsewhere in this manual) was 
applied separately to time-series of each of several attributes (indicators) for the North Sea 
cod stock studied under FISBOAT and available at http://www.ifremer.fr/drvecohal/fisboat/.  
The CUSUM procedure comprises three steps (Hawkins and Olwell, 1997; Montgomery, 
2005). First, a reference period is defined as a period when the health of the stock was 
considered acceptable (in-control).  This serves to estimate the in-control reference mean and 
variance for each indicator. The same reference period was applied to all indicators with the 
results shown in table 5.8.1. Second, the CUSUM was tuned for each indicator to signal 
important deviations from the reference mean in years outside the reference period. The 
tuning of the CUSUM results in statistically defining the false alarm rate, and the no alarm 
rate associated with the in-control limits that are set to enclose acceptable deviations from the 
reference mean. The application of the CUSUM to each indicator for the cod stock resulted 
in an array of deviations from the reference mean vector expressed in standard deviation 
units.  This is the CUSUM diagnostic table shown in table 5.8.2. Each column of the array 
corresponds to each indicator time series of deviations.  Because the deviations being 
expressed in units of standard deviation, comparisons between indicators are immediate. 
Setting the non-alerting deviations to zero, the diagnostic CUSUM table provides the 
quantitative values of the deviations from the reference means with a + or – sign which 
trigger alarm signals. Clearly, in some years only a small number of indicators signal alarms, 
some perhaps with high deviations, whereas, in other years, many will signal. Here, we used 
expert judgement in assigning each year as 'in-control' or 'out-of-control' based on which 
indicator signalled alarm and how many of them there were (table 5.8.2).  Cells in the table 
may be coloured red, orange, or green, as for traffic lights, to show at a glance the perceived 
seriousness of the state indicated. 
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Table 5.8.1: Parameters of the CUSUM control scheme for North Sea cod for the biological indicators. 
Reference period is 1985-1994. Parameters are: mu, sd: mean and standard deviation in reference period; k: 
allowance in sd units; h: decision interval in sd units; ic.arl (years): in-control ARL (average run length to a 
false alarm) also noted ARL(0); ic.rl.25 (years): RL value at the first quartile of the RL distribution; oc.arl 
(years): out-of-control ARL (average run length to signal real change) also noted ARL(2k). Indicators are: 

Survey index: abundance index for ages 1 to 6; Recruit index: abundance at age 2; Lbar: average length in the 
population; L25: length value of the first quartile; L75: length value of the third quartile; L50 maturity: length 

value at which 50% of the population is mature; Z: apparent total mortality.  

 
 

 Survey 
index 

Recruit 
index 

Lbar L25 L75 L50 
maturity 

Z 

mu 19.12 18.00 34.77 20.69 41.70 65.44 1.12 
sd 0.26 0.77 4.80 5.16 6.45 5.24 0.44 
k 1.3 0.9 1.2 0.9 0.8 1.1 1.0 
h 1.0 1.0 1.0 1.0 1.2 1.1 1.0 

ic.arl 79.3 27.5 60.0 27.5 30.0 56.2 35.3 
ic.rl.25 23.0 8.0 17.0 8.0 9.0 16.0 10.0 
oc.arl 1.5 1.9 1.6 1.9 2.3 1.8 1.8 
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Table 5.8.2: CUSUM diagnostics table for North Sea cod using biological population indicators. Values are the 
deviation from the reference mean for each indicator in standard deviation units. Reference period is 1985-

1994. The procedure signals an alarm from 1999.  Indicators are: Survey index: abundance index for ages 1 to 
6; Recruit index: abundance at age 2; Lbar: average length in the population; L25: length value of the first 

quartile; L75: length value of the third quartile; L50 maturity: length value at which 50% of the population is 
mature; Z: apparent total mortality.  

 
Year Survey 

Index 
Recruit 
index 

Lbar L25 L75 L50 
mat-urity 

Z diag-nostics

1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1992 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1993 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1994 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1995 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
1996 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
1997 0.00 0.00 -1.84 -1.03 -2.21 -1.85 0.00  
1998 0.00 0.00 0.00 0.00 -2.00 -3.44 0.00  
1999 -1.27 -1.30 0.00 0.00 0.00 -7.36 0.00 alarm 
2000 -1.65 0.00 0.00 0.00 0.00 -9.34 0.00 alarm 
2001 -3.04 0.00 0.00 0.00 0.00 -9.84 0.00 alarm 
2002 -3.96 0.00 0.00 0.00 0.00 -12.78 0.00 alarm 
2003 -7.48 0.00 0.00 0.00 0.00 -15.95 0.00 alarm 
2004 -10.50 -1.18 0.00 0.00 0.00 -19.33 0.00 alarm 
2005 -14.97 -2.02 0.00 0.00 1.23 -23.10  alarm 
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5.5.3 A multivariate statistical procedure. 
Pierre Petitgas, 
IFREMER, Nantes, 
France  

Introduction 
Part I of this presentation (see section 5.8) illustrated the 'traffic light approach' for 
combining results from time-series of several indicators into a single assessment of a fish 
stock.  A complimentary approach is to use multivariate statistical methods.  An illustrative 
example is given here.  More detail on the PCA and MFA approaches discussed can be found 
in sections 5.10 and 5.11 of this manual, respectively. 
 
Multivariate statistical process control methods use the relationships existing among control 
variables to prevent having to deal with false alarms in the many individual control charts. 
Thus multivariate process control methods are potentially more efficient than control 
methods based on the analysis of a collection of univariate charts (e.g., Hawkins and Olwell, 
1997). Various multivariate control methods are available. Hotelling’s T2 statistic (Hotelling, 
1947) is the analogue in the multivariate case of the Shewart chart in the univariate case (e.g., 
Hawkins and Olwell, 1997). It is best suited to detect large shifts in the mean as it uses the 
current sample only at each time step. To detect rapidly small shifts in the mean, consecutive 
samples need to be considered for which multivariate CUSUM methods (Crozier, 1988) and 
multivariate exponentially weighted moving average (EWMA) methods (Lowry et al., 1992) 
have been developed. Scranton et al. (1996) used multivariate EWMA on a reduced number 
of principal components with increased shift detection capability. In environmental 
monitoring, Manly and MacKenzie (2000) made use of Principal Component Analysis (PCA) 
to project multivariate observations in a factorial space and assess whether they were inside 
or outside the area within which the process could be considered in control.  

Example 
To illustrate a multivariate approach, the same CUSUM results for North Sea cod discussed 
previously in relation to the Traffic Light approach (section 5.8) will be used with the 
addition of parallel time series for some spatial indicators. The approach considered is 
inspired by the PCA procedure of Manly and MacKenzie (2000).  First, the centre of gravity 
in factorial space was estimated for the in-control reference years. Next, the distance in 
factorial space of the observation in each year to that centre of gravity was computed and a 
new time series constructed from them. Then a CUSUM procedure was applied to that 
distance. PCA-based distances were applied to the biological (non-spatial) indices, while, for 
the spatial indices, MFA-based distances (see section 5.11) were used. Evolution of the stock 
can then be summarised with two distances, one for the spatial and one for the non-spatial 
indicators. A traffic light type table with two columns (one for each distance) of CUSUM 
deviations from the in-control domain represents simply the multivariate process control 
scheme for all the attributes of the stock (tables 5.9.1, 5.9.2).  
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Table 5.9.1: Parameters of the CUSUM control scheme for North Sea cod for the multivariate indicators. 
Reference period is 1985-1994. Parameters are: mu, sd: mean and standard deviation in reference period; k: 
allowance in sd units; h: decision interval in sd units; ic.arl (years): in-control ARL (average run length to a 
false alarm) also noted ARL(0); ic.rl.25 (years): RL value at the first quartile of the RL distribution; oc.arl 
(years): out-of-control ARL (average run length to signal real change) also noted ARL(2k). Indicators are: 

Spatial.mul.mfa: MFA-based multivariate distance for the spatial indices; Biol.mul.pca: PCA-based multivariate 
distance for the biological indices. 

 
Parameter Spatial.mul.mfa 

 
Biol.mul.pca 

mu 1.35 1.67 
sd 0.23 0.76 
k 0.9 1.5 
h 1.2 1.0 

ic.arl 39.2 142.2 
ic.rl.25 11.0 41.0 
oc.arl 2.1 1.4 
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Table 5.9.2: CUSUM diagnostics table for North Sea cod using multivariate indicators, one for all the spatial 
indices and the other for all the biological indices. Values are the deviation from the reference mean for each 

indicator in standard deviation units. Reference period is 1985-1994. The procedure signals an alarm from year 
2000.  Indicators are: Spatial.mul.mfa: MFA-based multivariate distance for the spatial indices; Biol.mul.pca: 

PCA-based multivariate distance for the biological indices.  

 
Year 

 
Spatial.mul.mfa Biol.mul.pca diagnostics 

1985 0.00 0.00 ref 
1986 0.00 0.00 ref 
1987 0.00 0.00 ref 
1988 0.00 0.00 ref 
1989 0.00 0.00 ref 
1990 0.00 0.00 ref 
1991 0.00 0.00 ref 
1992 0.00 0.00 ref 
1993 0.00 0.00 ref 
1994 0.00 0.00 ref 
1995 1.40 0.00  
1996 0.00 0.00  
1997 0.00 1.46  
1998 0.00 0.00  
1999 0.00 3.46  
2000 1.77 3.80 alarm 
2001 2.66 4.06 alarm 
2002 2.00 4.63 alarm 
2003 1.69 8.36 alarm 
2004 2.42 11.96 alarm 
2005 2.85 17.13 alarm 
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Appendix 1 

Format for documenting indicators 
The format adopted here for presenting indicators is derived from  
Halliday, R.G. and Mohn, R. (2001).  Proceedings of the Fisheries Management Studies WG, 8-11 
January 2001.  Canadian Science Advisory Secretariat, Proceedings Series 2001/08 (Appendix 5, pp. 
45-48). 
 
Description of indicators/indices 
 
INDEX : descriptive name + acronym 
Description : short description of what it is (and for case studies in second stage, survey in which it is 
measured, e.g. "mean length of NEA cod caught during winter Barents Sea surveys") 
 
Stock attribute :  
• attribute(s) that the indicator is deemed to reflect (e.g. abundance, productivity, recruitment, 

mortality, ecosystem, …) 
 
Derivation : 
• document briefly how the index is derived from raw data for each station, and then integrated for 

the whole survey year (+ ref. published manuals for details). 
• and how variance of total index is obtained 
 
Reference points : 
• bases for setting the RPs (as target, limit or trigger) 
• alternative choices and their rationale 
 
Interpretability : 
• how does the indicator reflect stock status or the identified attribute? 
• what caveats exist regarding interpretation? (e.g., whole stock vs. population in survey area, if 

they differ) 
• processes involved in changes (is indicator's response specific?) 
 
Measurability : (keyword here is: confidence in estimates of the indicator) 
• statistical properties of estimator (variability, bias, skewness, …) 
• transformations required before use 
• alternative formulations for the same estimators 
• alternative estimators of same indicators ; pros & cons 
 
Sensitivity : 
• how rapidly & accurately does indicator respond to changes in stock status? 
• does natural variability likely masks real changes? 
 
Review of performance : 
• performance of the indicator in hindsight, to infer stock status 
• document the adequacy of the indicator, its estimator and its RPs (or problems encountered for 

the specific case study) 
 
References : 
(e.g., for case studies, references to published manuals of procedures, articles in which the indicator 
has been applied in advisory context, …) 
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Document 2: Indicator-Based Assessment – Application of methods 
 
 
 
ICES CM 2007/O:16 
 
 

Comprehensive indicator-based diagnostics of fish stocks using  
fishery-independent survey data: the FISBOAT report on case studies 

 
 

Pierre Petitgas (1), J.-C. Poulard (1), K. Radtke (2), M.-T. Spedicato (3), L. Ibaibarriaga (4),  
C.-Y. Politou (5), K. Korsbrekke (6), C. Deerenberg (7) and P. Fernandes (8) 

 
(1): IFREMER, France; (2): SFI, Poland; (3): COISPA, Italy; (4): AZTI, Spain; (5): HCMR, Greece; (6): 
IMR, Norway; (7): IMARES, Holland; (8): FRS, Great Britain 
 
Research fisheries surveys are now implemented as monitoring programs of fish stocks and provide a 
large set of measurements on the evolution of their state. Here we show how fishery-independent 
diagnostics of fish stocks can be achieved using a comprehensive set of indices and analysis 
procedures inspired from environmental monitoring. 
 
We present fish stock indices, analysis procedures and diagnostics results for nine stocks in European 
waters. The set of indices considered comprises two population abundance indices, four indices for 
population vital traits and nine indices for spatial organisation by age. The indices are combined and 
selected using multivariate techniques that maximise correlation between variables and also continuity 
in time. Trend detection and quality control techniques are then applied on the time series of the 
combined and selected indices. Based on these analyses diagnostic tables are filled, leading to 
comprehensive indicator-based diagnostics of fish stocks.  
 
Similar analysis procedures are applied to all case studies and results are reported using standardised 
templates. The application to a wide range of fish stocks in different health conditions with different 
behaviours and past histories demonstrates the potential of the tools and indices for delivering 
diagnostics in operational mode. The paper is intended to be a manual summarising the results of the 
EU-project Fisboat (Fishery-independent survey-based operational assessment tools) for general use 
outside the project.  
 
Key words: Fishery-independent assessment, indicators, quality control, spatial statistics, vital traits, 
anchovy, hake, cod, herring, red mullet. 
 
 
Contact author: Pierre Petitgas: IFREMER, BP 21105, 44311 cdx3 Nantes, France [tel: +33 240 374 
163, fax: +33 240 374 075, e-mail: pierre.petitgas@ifremer.fr]. 
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1. Introduction  
 
Can survey data by their own be used to make diagnostics on fish stock health? If so, with which 
methods? The UE project FISBOAT (Fishery Independent Survey-based Operational Assessment 
Tools, 2004-2007 ;  http://www.ifremer.fr/drvecohal/fisboat/) was set up to answer these questions. 
The project investigated two approaches. One was the simulation evaluation of traditional stock 
assessment analytical models (Kell et al., 2007) using abundance survey indices at age. The question 
was: given that survey abundance indices are non absolute and given the uncertainty in the estimates, 
what harvest control rule can be set to manage stock abundance levels? The other approach, which is 
our interest in this paper, was the development of a comprehensive indicator-based monitoring 
methodology making full use of all the biological information (not just the abundance at age indices) 
available in survey data. Metrics characterising fish stock attributes (here after termed indicators) were 
developed and estimated from survey data, resulting in the construction of time series of a variety of 
indicators of stock attributes. Such indicators were used as control variables with which the state of the 
stock was monitored. Methods for analysing the time series of indicators were developed as well as 
methods for making diagnostics based on the analysis of the indicator time series. Indicators and their 
methods are documented in a companion paper (Cotter et al., 2007). The project methodological 
developments resulted in the set up of statistical monitoring procedures of fish stock status using a 
comprehensive list of indicators of stock attributes. In this paper we summarise the results obtained by 
applying the methods to the indicators on the project case studies.  
 
The project case studies scanned nine different stocks across European waters in the demersal and 
pelagic domains with different vital traits and stock histories and survey methodologies. The case 
studies were: cod in the Barents sea the Baltic and the North Sea, hake in the Bay of Biscay, the 
Ionnian sea and the Aegean sea, herring in the North Sea, anchovy in the Bay of Biscay and red mullet 
in the Thyrhenean sea. Case study individual reports followed the same template and these have been 
the basis for the present compilation. Individual reports are available on Fisboat website at  
http://www.ifremer.fr/drvecohal/fisboat/. Three major steps were followed. First, indicators of 
population attributes were calculated and time series of indicators were produced. Then, the time 
series of indicators were statistically analysed to detect changes. Last, results of the previous step for 
the variety of indicators were combined in diagnostic tables to formulate a diagnostic.  
 
The statistical identification of changes in the time series relied on the definition of a reference period 
to which compare the indicator values for years outside that period. The reference period was defined 
as that in which the stock status was thought to be acceptable, based on historical knowledge. Such 
strategy is similar to that in statistical process control, where two phases are distinguished (e.g., 
Montgomery, 2005). Phase I is where the process is sampled to acurately define the ‘in-control’ state 
of the indicators. Phase II is the monitoring phase where statistical procedures are applied to detect any 
departure from the ‘in-control’ state. Phase I was here replaced by the definition of a reference period. 
We shall not discuss the definition of the reference period for each stock. We shall be concerned only 
by the monitoring of the stock relatively to the reference defined. The diagnostic is then relative to a 
reference and not absolute.  
 
The population indicators were raw indicators estimated from the survey data (e.g., mean length in the 
population or gravity center in the spatial distribution) as well as multivariate combined indicators 
derived from the raw indicators (e.g., principal components or departure from a reference domain in 
factorial space). The time series were analysed to detect trends and changes in trends between different 
sets of years (e.g., trend over all years as compared to trend in the recent years only). Also the Cusum 
statistical control scheme was used to detect changes in the mean along the series. The Cusum 
procedure led to the construction of a traffic light type diagnostic table were departures from reference 
values triggered alarm signals with set risks of false alarm and non alarm. The trend analysis 
procedure led to the construction of a cause-effects diagnostic table were trends of different indicators 
were combined and interpreted using background biological knowledge. In all, changes were detected 
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and were assigned causes when possible. The comprehensive indicator-based monitoring system 
developed produced coherent results which should complement the traditional assessment and thus 
increase the reliability of diagnostics on fish stocks.  
 
 
2. Methods  
 
In this section we summarise the procedures applied to the case study fish populations (Table 1) in 
order to explicit the monitoring system of population status that was set up based on fisheries research 
surveys only. For each of the indices and methods used below, documented computer code in R is 
available on Fisboat website at  http://www.ifremer.fr/drvecohal/fisboat/.  
 
How were populations described ? 
 
The evolution of the state of populations was characterised by time series of a variety of indicators. 
 
Raw indices. These were estimated directly from the survey data. Two groups of indices were 
considered: biological (non spatial) and spatial indices (Tables 2 and 3). Biological indices were 
estimates at population level to characterise abundance, recruitment, length structure, maturity and 
mortality. Spatial indices characterised the different aspects of a map: location, dispersion, patchiness, 
occupation, correlation, aggregation. Spatial indices were estimated by age to characterise the spatial 
distribution in each age and thus characterise the spatial organisation of the life cycle. The biological  
and spatial indices are fully described in Cotter et al. (2007) and in Woillez et al. (2007a). 
 
Multivariate indices. These were derived from the raw indices and were (composite) multivariate 
summaries of the many raw indices considered. They were defined as multivariate distances to the 
gravity center of the reference period. Principal Components Analysis (PCA) was used for 
constructing a multivariate biological index and Multiple Factorial Analysis (MFA) was used for 
constructing a multivariate spatial index as the spatial information was 3D (indices, ages and years). 
PCA and MFA allowed to evidence the linear correlations existing between the indicators. For the 
biological indices the PCA-based index was the distance in the first factorial plane between the 
position of the gravity center of the reference period and that of the current year. For the spatial indices 
the MFA-based index was the sum over all ages of age-specific distances. Each age-specific distance 
was calculated in the first factorial plane between the position of the age-specific gravity center for the 
reference period and that of the current year. The multivariate indices are fully described with their 
methods in Cotter et al. (2007) and Woillez et al. (2007a).  
 
Selection of raw indices. The MAF method (Min/Max Autocorrelation Factors) was used as an 
automated procedure to select those indices that best summarised the multivariate information with 
highest continuity in time. The MAF method allowed to construct pincipal components (factors), the 
autocorrelation of which decreases from the first factors to the last ones. The very first factors (MAFs) 
extracted the part of the multivariate information which was the most continuous in time. Therefore 
the loadings of the indices on the two first MAFs were used to select those indices that showed highest 
continuity in time as well as carrying the most of the multivariate information. The MAF method is 
fully documented in Cotter et al. (2007) and in Woillez et al. (2007b).  
 
How were changes identified in the indicators time series ? 
 
Change in population status was identfied by analysing the indicator time series. The detection of 
linear trends and changes in trends were considered. Another anlysis was the detection of shifts in the 
mean value of the indicator relatively to that in the reference period using the Cusum control charts as 
in industrial quality control.  
 
Trend plots. Linear trends were estimated and their significance tested using the p-value that measures 
the risk of type-I (risk of identifying a trend when non exists). The linear trend in the last years of the 
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series were also tested so as to detect change in the slope between the long-term trend and that in the 
last years of the series. A method based on the value of the second derivative was used to identify 
change points and detect change in slope for the last years. The derivative’s method is fully 
documented in Cotter et al. (2007).  
 
DI-Cusum plots. Here, we are interested in detecting shifts in indicator mean level relatively to that in 
the reference period, irrespective of the type of change, whether linear or not. The decision interval 
form of the Cusum was used. Values outside the interval were considered significantly different than 
those in the reference period (in-control) and therefore out-of-control. The in-control interval was 
statistically defined with set risks of false alarm and no-alarm rates. The DI-Cusum procedure is fully 
documented in Cotter et al. (2007) and in statistcal quality control litterature (e.g., Montgomery, 
2005).  
 
How were diagnostics made and interpreted ? 
 
Results of the analyses of the many indicator time series were combined in diagnostic tables to 
elaborate a diagnostic of the state of the populations. Each method (trend and di-cusum) led to a 
particular diagnostic table (full documentation in Cotter et al., 2007).  
 
Trend analysis: interpretation using cause-effects tables. A particular cause inducing variation in 
biological indices can be translated into an expected combination of trends in the indices, e.g., an 
increase in fishing mortality is expected to translate into an increase in Z, a decrease in Lbar and a 
decrease in Ln-Ntot. The cause-effects table (Table 4) provided a list of causes with their expected 
resulting combination of trends in the indicators, thus helped identify potential causes to the observed 
trends in the indicators (Trenkel et al., 2007).   
 
Di-Cusum analysis: interpretation using traffic light tables of out-of-control signals. The application 
of the Di-Cusum to each indicator resulted in an array of out-of-control deviations from the reference 
mean vector. This was the Cusum diagnostic table. Each column of the array corresponded to each 
indicator time series of deviations. Setting the non-alerting deviations to zero, the diagnostic Cusum 
table provided the quantitative values of the deviations from the reference means with a + or – sign 
which triggered alarm signals. Cells in the table may be coloured red, orange, or green, as for traffic 
lights, to show at a glance the perceived seriousness of the state indicated. 
 
Summary sheet and case study reporting. The results for each case study were reported in a summary 
sheet with a defined format. The sheet documented the survey time series, the indicators were used 
(raw, multivariate), the reference period, the methods were used to analyse the indicator time series, 
the resulting diagnostic on the stock. A template for reporting case study results was defined which 
comprised the following items: Data, Looking for change, Interpretation, What has been learned, 
Summary sheet, Comparison with traditional assessment, Formulation of advice. The template is 
annexed.  
 
 
3. Results from the case studies 
 
 
Indices characterising population status 
 
The different indicators (raw and multivariate) that were computed in each case study were compiled 
in Table 5. PCA applied on the raw biological indices revealed a strong correlation structure between 
the indices. Across the different case studies, the correlation structure showed some consistency as can 
be seen from the loadings of the indices in the principle components (Table 6). The first principal 
component was always made of the length indices, which are much correlated to each other. 
Depending on the case study, the second component was correlated either to abundance, recruits or Z. 
For most stocks, only the first 2 components could be interpreted with high enough loadings of 
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particular indices. For 3 stocks only, the third component was well related to one index, either Z or 
Recruits. The fact that length indices, abundance indices and Z did not always show a correlation 
structure easily interpretable (e.g., opposition) was perhaps due to the fact that no time lag was 
considered in the analysis. The multivariate biological index was a measure of inter-annual departures 
from the correlation structure as observed in the reference period. 
 
MFA applied on the spatial indices also revealed marked and progressive changes in the spatial 
distributions with age (Tables 8a-b; Figs. 1a-c), which characterised the life cycle spatial pattern in 
each case study. Across all case studies, the area indices, inertia and gravity center were the spatial 
indices that were mostly invilved in explaining best the principal components.  
For cod in the Barents Sea, the different ages were progressively aligned along the first component. 
Spatial distributions of young ages were less dispersed, more to the East and occupied less area than 
for older ages. Spreading area decreased slightly in the mid-ages (A4-7).  
For cod in the North Sea, young (A1) and old ages (A5-6) differred on the first component from 
intermediate ages (A2-4). Spatial distributions of young and old ages were more to the East, less 
dispersed, occupied smaller area, and were more uneven (higher microstructure or nugget effect) than 
for intermediate ages. Age 1 and Ages 5-6 differed on the second component by the location of their 
centre of gravity and anisotropy. The spatial distribution of old ages was more to the north, more 
anisotropic, and occupied a smaller area than that of the age 1 fish. 
For cod in the Baltic, young (A1-2) differred from old ages (A3-5) on the first component. Spatial 
distributions of young ages were more to the South, less dispersed and less anisotropic than old ages. 
Spatial distributions of ages A1-2 and A5 differred from that of other ages on the second component 
by positive area occupied. Ages A1-2 and A5 occupied a smaller less area than ages A3-4. 
For herring in the North Sea,  young (A1-2) differred on the first component from old ages (A7-9).  
Spatial distributions of young (immature) ages were more to the East and South, less dispersed and 
less spread than older ages (A4-9). The acquisition of maturity marked a clear difference in the spatial 
distribution for ages A2-3 as the distribution of mature A2-3 were more alike than that of older ages 
A4-7. Spatial distributions of mature ages A2-A9 occupied larger positive areas with age, which was 
visible on the second component.  
For hake in Biscay, young (A0-3) differred on the first component from old ages (A4-5). Spatial 
distributions of the old A4-5 were more to the West occupying a larger area with more spread. Ages 
A0-1 differred on the second component from the other ages as their spatial distribution was more 
anisotropic.   
For hake in the Ionian Sea, young (A0-3) differred on the first component from old ages (A4-5). 
Spatial distribution of the old A4-5 were more to the South and West, occupying a smaller area and 
were more uneven (larger microstructure index). Age A0 differred on the second component from the 
other ages as its spatial distribution was more anisotropic.  
For hake in the Aegan Sea, ages A0 and A5 differred on the first component from ages A2-3. Their 
spatial distributions were more to the North and West and were less dispersed with smaller spreading 
and equivalent areas. The second component distinguished the spatial distribution of ages A0-1 from 
that of A4-5 as the young ages A0-1 occupied a larger positive area. 
For anchovy in Biscay (acoustic surveys), the spatial distribution of ages A1-3 had similar 
characteristics, though A1 was slightly more dispersed and anisotropic. The spatial distribution of the 
anchovy eggs shared similarities to that of the adults but was also different (Table 8b). Both adult fish 
and egg distributions showed the same opposition on the first component between the area indices and 
the longitude of the gravity centre. The microstructure index (uneveness in the distribution) was 
characteristic of the egg distributions (component 2) which was less important in characterising the 
distribution of the adult fish. The anisotropy index characterised the adult fish distribution (component 
2) but did less so for the egg distributions as that index corrrelated to component 3 of the egg 
distributions.  
For red mullet in the Thyrrhrenian Sea, the characterisation of the spatial distributions have been 
separated in two sub region with marked different orientations, GS10a (western coast of mainland 
Italy) and GS10b (northern coast of Sicily). In GS10a, Ages A1 and A2 differred on the first and 
second components. Age A1 was more distributed to the SE and more uneven but occupying a larger 
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positive area. In GS10b, age A1 differred from A3 on the first component. Age A1 was distributed 
more to the East with larger equivalent and spreading areas and less uneven than A3.  
The multivariate spatial index was a measure of inter-annual departures from the average spatial 
patterns as observed in the reference period.  
 
Identification of changes and formulation of diagnostics 
 
Table 9 compiles what methods were applied on what indicators in each case study. We now 
summarise the results obtained in each case study.  
 
Cod in the Barents Sea (Fig.2). Time series of raw indices were visually inspected. The time series of 
Ln.Ntot, Ln.Rec and Z showed clear troughs at the begining of the series (90-94). This particular 
situation made it difficult for the trend methods to capture the signals due to scale and position of the 
changes in the time series. In constrast, the Cusum method was able to detect these changes (note that 
the reference period was at the end of the time series). The multivariate indices with the Cusum 
analysis allowed to achieve a diagnostic. Both spatial and abundance indices triggered alarms at the 
beginning of the 90s. The series of survey Z compared well with that of the ICES VPA esitmate. The 
survey coverage may be hampered by the presence of sea ice in the eastern Barents Sea, limiting the 
use of the survey indicators.  
 
Cod in the North Sea (Fig.3a-b). In constrast to Barents Sea cod, North Sea cod showed clear trends in 
many indices, either long term or in the recent years since 2000. Trend and Cusum methods agreed 
and raw indices and multivariate indices were in agreement as well. The MAF selection of raw indices 
selected the following indices as carrying the variability in the stock: L50.matu, Ln.Ntot.matures, 
PA.matures, xcg.matures, ycg.matures, MI.recruits, MI.immatures, ycg.recruits, Anisotropy.recruits, 
ycg.immatures. Length at maturity has been decreasing all along the survey time series, total 
abundance and recruits decreased seriously since 2000 and so did the spatial indices of area and 
location with more northerly distribution of old fish but also recruits. Out-of-control alarm signals 
were confidently trigerred with the Cusum diagnostic table since 2003 as all indices have been out-of-
control since that year. An alarm could be trigerred as early as 2000, if less weigth was given in the 
analysis to the length indices. Recent trends in were estimated for the last 5 years using the derivatives 
methods. The cause-effects table and the trend results table suggested that the closest cause to the 
recent trends identified was an increase in fishing mortality.  
 
Cod in the Baltic Sea (Fig.4). The survey series began in the mid-90s at a time when the stock was 
already at a low abundance level. Therefore the survey series could not trace the historical evolution of 
the stock but its recent evolution within a degraded state. The index L50.matu was unreliable because 
of the seasonal timing of the survey. Visual inspection of the raw indices suggested that abundance at 
age A5 and Positive area of A5 showed obvious long-term decreasing trends. The other indices 
contained much variability. Recent trends were estimated for the last 5 years using the derivatives 
methods. Comparison of the cause-effects table with the trend results table suggested that the closest 
cause to the recent trends identified was an increase in fishing mortality. Based on age A5 series, the 
Cusum traffic light diagnostic table suggested to signal alarms since 2000. Results were in agreement 
with ICES assessment. 
 
Hake in the Bay of Biscay (Fig.5). The time series in the different indices were variable enough to 
make visual inspection difficult. Trend analysis revealed no long-term trend but the derivatives 
method identified recent trends in length indices, Z and some spatial indices. It is noteworthy that the 
derivatives method identified changes where a linear approach did not. The recent increase in the 
length indices together with an a recent increase in Z were inconsistent with the cause-effects table and 
therefore difficult to interpret. The Cusum also diagnosed increase in Z and L25 indices in the recent 
years. Therefore that increase was considered real. The selection of indices using the MAF procedure 
resulted in selecting the area indices for the older fish: SA.A4, EA.A5, SA.A5, PA.A5, and xcg.A3. 
The Cusum procedure identified changes for these indices when the trend method did not, supposedly 
because of the type of variability in the time series. The old ages A4-5 showed decreased abundance, 
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decreasing area indices and the age A3 a shift of its gravity centre to the West. The multivariate spatial 
index gave similar results with the Cusum as the MAF selected indices. Departure of the multivariate 
biological index from its reference domain had different causes that can be assigned based on the PCA 
loadings of the indices and the Cusum diagnostic table of the raw indices: in 98 total abundance A1-5 
is low, in 99 and 2003 L25 has increased, in 2004, recruitment (A0) has increased. In all, though some 
amelioration of recruitment occurred in 2004, deterioration of abundance and spatial indices for old 
ages justified signaling alarms since 2000.  
 
Hake in the Ionian Sea (Fig. 6). The survey series was short (1994-2003) and all indicator time series 
had high variability. Trend and Cusum methods did not agree in the fluctuations that could be 
identified, due to the variability in the series. The derivatives trend method identified declines in the 
last 5 years for the Length indices while the Cusum detected no out-of-control fluctuation in these 
indices. The trends identified in the biological indices could not be interpreted using the cause-effects 
table as the combination of trends was inconsistent with any of the causes suggested in the table. The 
multivariate biological index was declared out of control by the Cusum analysis for years in which the 
recruitment index was high (1995, 2003). The multivariate spatial index was declared out of control 
for years within the reference period. Given the intrinsic variability in the time series, a longer series 
seemed necessary to formulate any diagnostic.  
 
Hake in the Aegean Sea (Fig.7). As for Ionian hake, the survey series was short (1994-2003) and all 
indicator time series had high variability. Trend and Cusum methods did not agree in the fluctuations 
that could be identified, due to the way in which the variability is disposed in the series. Here the 
trends method identified no trend while the Cusum identified poor abundance until 1997 as well as 
positive and negative alarms in L25, L50 and L75 until 1997. At the beginning of the series (1994), 
the abundance is low and is progressively increasing until 1997. The out-of-control alarms on the 
length indices could have resulted from the poor abundance, in coherence with the cause-effects table. 
The Cusum analysis triggered out-of-control signals for the multivariate biological index in 1994-95 
as a result of low abundance and increase in length indices. Until 1997, the multivariate spatial index 
is identified to be out-of-control by the cusum analysis. The diagnostic is thus an alarm signal at the 
beginning of the series in the years 1994-97: poor abundance,  decrease in length, departure in the 
spatial distribution.  
 
Herring in the North Sea (Fig.8a-c). This case study has been analysed using multivariate methods 
and Cusum analysis only. Similarly to Barents Sea cod, the time series of abundance showed a clear 
trough in the middle of the series, peaking low in 1994, the increasing in the recent years until 2002. 
The selection of indices using the MAF procedure resulted in selecting those raw indices that carried 
the major signals. Amongst these, 6 indices were selected by visual inspection: Ln-N.matures, Ln-
imatures, xcg.matures, ycg.matures, I.matures, SA.matures. The mature fish decreased in abundance 
reached a low in 1994 and increased again in 2000-02. During the low abundance period, the fish was 
less northerly distributed but came back latitude of the gravity center came back to previous values 
with increasing abundance. It is noteworthy that some spatial indices did not came back to their 
previous values of before the abundance low. In particular the spreading area, the equivalent area and 
the inertia have stayed low even after the abundance rebuild. Also the longitude of the gavity centre 
stayed to the West and did not came back to previous values. The abundance of imatures has increased 
in recent years, rebuilding the population. The Cusum analysis of the multivariate spatial index 
revealed out-of-control values during the years of low abundance. But the multivariate biological 
index was not so much influenced by the decrease in the old fish in the mid-90s probably because of 
the small response of other biological indices (length indices). In contrast, the multivariate biological 
index responded to the increase in young fish after the mid-90s. Its Cusum analysis identified out-of-
control values for the recent period that revealed increase in abundance. In the Cusum diagnostic table, 
the multivariate spatial index revealed the period of alarm while the multivariate biological index that 
of recovery. The choice of reference period (1989-93) perhaps influenced the sign of the out-of-control 
signals for the multivariate biological index.  
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Anchovy in the Bay of Biscay (Fig.9). The anchovy population in the Bay of Biscay is monitored by 
two independent surveys in spring, an acoustic survey and an egg survey. Here, the acoustic survey 
provided the biological indices and the spatial indices at age and the egg survey provided the spatial 
indices for the eggs. In the last last years of the survey series, total abundance and recruitment droped 
to extremely low values. Length indices increased. The spatial distributions in the egg and the adult 
fish were more coastal and anisotropic. The Cusum analysis and the trends method provided similar 
results as they both identified the important changes in the last years of the series. The Cusum 
diagnostic table allowed to trigger alarm signals in 2004 and 2005. ICES recommended closure of the 
fishery in 2005 only. Early warnings seemed possible with the present indicator-based monitoring.  
 
Red mullet in the Thyrrhenian Sea (Fig. 10). As for eastern mediterranean hake, the survey time series 
was short and variability in the indices high. The derivatives trend method identified significant recent 
(5 last years) changes in some indices while the Cusum did not. The reference period was defined as 
the second half of the series because of higher and more stable abundance levels. The choice of the 
reference period may have generated mismatch between the search for recent trends and the 
identification of departures from a reference with Cusum. Age group 3 disappeared from the 
experimental catches of the last 2 years (2002-2003) in the sub-unit 10a and a decrease of indices of 
length structure and recruit abundance, referred to the whole area, was occurring in the last two years. 
Highest values for Z were reached in the last years (2001-02) of the series whereas the survey index, 
Lbar and L75 were all, although not significantly, decreasing in 2003. A decline in length indicators 
was also observed from 1995 to 1998, but in that period the total mortality was lower and, in addition, 
in 1998 the survey and recruit indices increased, remaining almost stable since then. Spatial indices, 
especially those regarding location in subunit 10a, displayed a long-term trend and a tendency to 
change in recent years. But this was not identified using the Cusum analysis which considered that 
variability was such that no out-of-control value was reached. Di-cusum analysis allowed the 
triggering of alert signal for the survey index in 1997, when it reached the lowest level. An alert signal 
was also obtained for the multivariate spatial indices in the years 1995-1996 in the subunit 10b, 
probably as result of change in location and occupation indices. Older ages were more dispersed 
westwards and slightly offshore. The retained diagnostic was the following: recent increase in Z, low 
abundance reached in 1997 and change in spatial distribution in 10b in 1995-96. 
 
 
4. Discussion 
 
Research survey series have been systematically undertaken since 20 years in the most favourable 
cases and since 10 years otherwise. These series captured stock fluctuations at a time when stocks 
were already in a degraded situation. Short series with high variability in the indices resulted in 
statistical difficulty in detecting change. In the worst case, the derivatives method would detect recent 
trends and the Cusum no signal.  
 
Assigning one particular cause to a combination of trends using the cause-effects table was not always 
easy as many causes may occur jointly thus providing signals that are difficult to interpret. 
Surprisingly, variations in length indices have not always been straightforward to interpret and in 
some cases have been conflicting with the variation in other indices. The result was that diagnostics 
have always relied more on abundance and spatial indices and in some cases only on length indices.  
 
Refinements of the procedures in the application of the methods is indeed to welcome. For the Cusum 
analysis these are anticipated to be the definition of the reference period and the accepted risks of false 
and no alarm with which to trigger an out-of-control signal. For the trends method, the scale at which 
to identify short-term trends along the series has been a difficulty in those case studies where the 
change in slope was not at the end of the series. The interest in the Cusum procedure has the potential 
advantage of suggesting reference values for the indicators.  
 
In all, the methods have shown potential across the case studies to monitor population status using 
fishery-independent survey-based indices of population biological and spatial attributes. The system 
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was intended to be a monitoring system of the state of fish stocks. As such, it is hoped that it 
complements the traditional assessment, providing comprehensive biological and spatial information 
on the evolution of the stocks. Procedures can now be applied in operational mode to provide results to 
assessment working groups for any stock that is monitored with research surveys.  
 
Indicator-based diagnostics, because they are based on spatial indices as well as abundance and length 
indices can justify alternative management strategies to TAC such as the protection of juveniles or 
closed areas.  
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Table 1: Fish stocks case studies of the Fisboat project on which the indicator-based monitoring methodology was applied.  
 

Stock Behaviour Life span Survey Type Survey time series used Reference period used Age range in 
survey data 

Barents Sea Cod Demersal Long Botttom trawl      1989-2004 1996-2004 1-10 
North Sea Cod Demersal Long Bottom trawl      1985-2005 1985-1994 1-6 
Baltic Sea Cod Demersal Long Bottom trawl      1994-2004 1994-1999 [excluding 97] 1-5 
Biscay Hake Demersal Long Bottom trawl      1987-2004 [excluding: 91,93,96]  1987-1997 0-5 

Ionian Sea Hake Demersal Long Bottom trawl      1994-2003 [exclusing: 02] 1998-2001 0-5 
Aegean Sea Hake Demersal Long Bottom trawl      1994-2003 [exclusing: 02] 1998-2001 0-5 
North Sea Herring Pelagic Long Acoustics      1989-2002 1989-1993 0-9 
Biscay Anchovy Pelagic Short Acoustics 

Eggs 
     1989-2005 [excluding: 91-93,95,96,99] 
     1989-2005 [excluding: 93,96,99-00]  

1990-2001 
1990-2001 

1-3 
- 

Thyrrhenian Sea 
Red mullet (GS10) 

Demersal Short Bottom trawl      1994-2003 1999-2003 1-3 
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Table 2 : Raw biological (non spatial) indices used in the study. All Fisboat biological indices are fully described in Cotter et al. (2007). 
 

Population attribute Index name Index symbol Index description 
Total abundance  Abundance Ln-Ntot Natural logarithm ( total surveyed fish numbers all ages pooled +1 ) 

Recruit abundance Recruit abundance Ln-Rec Natural logarithm ( fish numbers at recruiting age +1 ) 
Length structure Mean length Lbar Mean length of the fish length histogram 
Length structure First quartile of length L25 25th percentile of the fish length histogram 
Length structure Last quartile of length L75 75th percentile of the fish length histogram 

Reproductive capability Length at 50% maturity L50matu Length at which 50% of the individuals have reached reproductive maturity 
Total mortality Mortality Z Z Mortality rate between years 1−t  and t of all individuals aged mina  to 1max−a  

 
 
 
 
Table 3 : Raw spatial indices used in the study. All Fisboat spatial indices are fully described in Cotter et al. (2007) and in Woillez et al. (2007). 
 
Population attribute Index name Index symbol Index description 

Location Longitude gravity center Xcg Weighted average of sample longitudinal positions 
Location Latitude gravity center Ycg Weighted average of sample latitudinal positions 

Patchiness Number of Patches NbPatch Concentration of abundance in patches with spatially distant local gravity centers 
Dispersion Inertia I Weighted variance of sample positions around a gravity centre 
Dispersion Anisotropy A Ratio of inertia for directions carrying minimal and maximal inertia 
Occupation PositiveArea PA Area of non null values 
Correlation Microstructure MI Decrease of correlation at short distance on the relative covariogram  
Correlation EquivalentArea EA Integral range of the relative covariogram 
Aggregation SpreadingArea SA Concentration of abundance relative to the homogeneous distribution 
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Table 4 : Cause-effects table linking one cause (first column) to a combination of expected trends in biological indicators. (after Trenkel et al., 2007). 0: no 
trend; -1: decreasing trend; 1: increasing trend. 
 

Cause Z ln-Ntot Lbar L25 L75 ln-Rec
F: increase 1 -1 -1 0 -1 0
F: decrease -1 1 1 0 1 0

Recruit: increase 0 1 -1 -1 0 1
Recruit: decrease 0 -1 1 1 0 -1

Faster growth 0 0 1 0 1 0
Slower growth 0 0 -1 0 -1 0

Larger fish caught (or change in fishing area, stock distribution or gear) -1 1 1 0 1 0
Smaller fish caught (or change in fishing area, stock distribution or gear) 1 -1 -1 -1 0 0  
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Table 5: Indices calculated in each case study 
 

 Cod Hake Herring Anchovy Red mullet 
 Barents 

sea 
Baltic sea North Sea Bay of 

Biscay 
Ionian sea Aegean sea North Sea Bay of 

Biscay 
Bay of 
Biscay 

Thyrhenian 
sea GS10a 

Thyrhenian 
sea GS10b 

Survey BT BT BT BT BT BT AC AC EG BT BT 
Age groups 1-10 1-5 1-6 0-5 0-5 0-5 1-9 1-3 - 1-2 1-3 

Biological Indicators 
Ln-Ntot X X X X X X X X X X 

Ln-Rec X X X X X X X X X X 

Lbar X X X X X X X X  X 

L25 X X X X X X X X  X 

L75 X X X X X X X X  X 

L50matu X X X X X X X X  X 

Z X X X X X X X X X X 

PCA-based X X X X X X X X  X 

Spatial indicators by age 
PositiveArea X X X X X X X X X X X 

Inertia X X X X X X X X X X X 

Anisotropy X X X X X X X X X X X 

Xcg X X X X X X X X X X X 

Ycg X X X X X X X X X X X 

NbPatches X X X X X X X X X X X 

Microstructure X X X X X X X X X X X 

EquivalentArea X X X X X X X X X X X 

SpreadingArea X X X X X X X X X X X 

MFA-based X X X X X X X X X X X 

MAF-based         X X X 
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Table 7: Loadings of the biological indices on their Principal Components for each case study. Asbolute values greater than 0.6 are in bold characters. 
 
Case study Index Comp1 Comp2 Comp3 Case study Index Comp1 Comp2 Comp3
Cod Ln.Ntot 0.376 -0.761 -0.248 Hake Ln.Ntot 0.832 0.353 0.180
Barents Sea Ln.Nrec -0.636 0.050 -0.616 Biscay Ln.Nrec 0.876 0.267 0.115

Lbar 0.912 0.205 -0.020 Lbar -0.749 0.520 0.152
L25 0.747 0.354 -0.065 L25 -0.452 0.762 -0.259
L75 0.878 0.187 -0.015 L75 -0.869 0.145 0.273

L50.matu -0.023 -0.757 0.441 L50.matu
Z -0.567 0.557 0.369 Z -0.590 -0.564 0.027

Cod Ln.Ntot 0.241 -0.834 -0.197 Hake Ln.Ntot 0.851 0.157 -0.040
North Sea Ln.Nrec 0.558 -0.527 0.550 Ionnian Sea Ln.Nrec 0.568 -0.641 -0.143

Lbar 0.831 0.429 0.129 Lbar -0.844 -0.197 -0.007
L25 0.845 -0.157 0.365 L25 -0.771 -0.366 0.147
L75 0.594 0.671 -0.144 L75 -0.853 0.139 -0.061

L50.matu 0.813 -0.039 -0.406 L50.matu
Z -0.345 0.277 0.751 Z -0.833 0.120 -0.205

Cod Ln.Ntot 0.104 -0.842 -0.183 Hake Ln.Ntot 0.759 0.387 0.160
Baltic Sea Ln.Nrec -0.690 -0.565 0.036 Aegean Sea Ln.Nrec 0.857 0.118 0.025

Lbar -0.823 0.227 -0.263 Lbar -0.828 0.260 -0.018
L25 -0.853 0.172 -0.165 L25 -0.410 -0.652 0.409
L75 -0.841 0.123 -0.257 L75 -0.739 0.448 -0.072

L50.matu -0.620 -0.527 0.322 L50.matu
Z 0.639 -0.301 -0.516 Z 0.146 -0.800 -0.298

Herring Ln.Ntot -0.66 0.60 0.00 Red Mullet Ln.Ntot 0.356 0.799 0.184
North Sea Ln.Nrec -0.48 0.41 -0.62 Thyrhenian Ln.Nrec 0.888 -0.082 0.050

Lbar 1.00 0.54 -0.03 Sea Lbar 0.890 0.053 -0.020
L25 0.39 0.77 0.04 L25 0.823 -0.266 -0.208
L75 1.00 -0.14 -0.11 L75 0.869 0.150 -0.138

L50.matu L50.matu 0.878 0.038 -0.165
Z 0.27 -0.38 -0.60 Z -0.642 0.317 -0.537

Anchovy Ln.Ntot 0.177 0.908 -0.014
Biscay Ln.Nrec -0.172 0.907 -0.070

Lbar 0.874 -0.179 -0.195
L25 0.841 -0.058 -0.352
L75 0.815 -0.126 0.383

L50.matu
Z -0.795 -0.381 -0.182  
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Table 8a: Interpretation of the principal components (PCs) resulting from applying MFA on the spatial indicators at age. The table shows the number of times 
that each index has shown a correlation greater than +0.5 or lower than –0.5 whith the PCs along the data series. Values in bold character signal a number of 
times greater than half the number of years.  
 

Case study Index Comp1 Comp2 Comp3 Case study Index Comp1 Comp2 Comp3
Cod PositiveArea 0+|16- 0+|3- 0+|0- Hake PositiveArea 0+|13- 1+|0- 0+|0-

Barents Sea Inertia 1+|12- 1+|0- 2+|0- Biscay Inertia 9+|0- 0+|6- 0+|1-
Anisotropy 1+|9- 1+|0- 7+|0- Anisotropy 7+|0- 10+|0- 1+|1-

xcg 0+|16- 0+|0- 1+|0- xcg 1+|9- 2+|3- 1+|1-
ycg 1+|7- 0+|5- 0+|1- ycg 7+|2- 4+|1- 2+|0-

MicrostructureIndex 5+|2- 4+|0- 4+|1- MicrostructureIndex 4+|0- 2+|4- 2+|2-
EquivalentArea 1+|3- 0+|6- 2+|7- EquivalentArea 0+|12- 0+|1- 2+|0-
SpreadingArea 1+|5- 0+|12- 1+|3- SpreadingArea 0+|11- 0+|7- 2+|0-

Cod PositiveArea 12+|0- 0+|16- 0+|0- Hake PositiveArea 0+|7- 0+|1- 1+|1-
North Sea Inertia 12+|2- 1+|2- 2+|5- Ionnian Sea Inertia 4+|2- 2+|0- 2+|1-

Anisotropy 0+|2- 15+|0- 3+|0- Anisotropy 2+|1- 3+|0- 1+|3-
xcg 0+|17- 4+|4- 2+|0- xcg 7+|0- 2+|0- 1+|0-
ycg 13+|0- 15+|0- 0+|0- ycg 1+|6- 2+|2- 0+|1-

MicrostructureIndex 1+|11- 3+|3- 1+|5- MicrostructureIndex 5+|0- 3+|0- 1+|1-
EquivalentArea 12+|0- 1+|2- 2+|4- EquivalentArea 2+|5- 0+|3- 1+|1-
SpreadingArea 18+|0- 0+|7- 1+|0- SpreadingArea 1+|5- 0+|3- 2+|0-

Cod PositiveArea 3+|0- 0+|7- 0+|1- Hake PositiveArea 3+|0- 9+|0- 0+|0-
Baltic Sea Inertia 1+|7- 0+|3- 2+|2- Aegean Sea Inertia 5+|0- 0+|5- 1+|1-

Anisotropy 1+|6- 3+|1- 5+|0- Anisotropy 0+|2- 1+|4- 1+|1-
xcg 2+|3- 3+|0- 1+|2- xcg 7+|0- 0+|4- 0+|0-
ycg 9+|0- 1+|0- 0+|3- ycg 2+|6- 1+|2- 0+|0-

MicrostructureIndex 1+|3- 1+|1- 2+|1- MicrostructureIndex 0+|5- 1+|1- 0+|1-
EquivalentArea 6+|0- 2+|5- 2+|0- EquivalentArea 7+|0- 0+|1- 3+|0-
SpreadingArea 8+|0- 0+|2- 2+|1- SpreadingArea 8+|0- 0+|0- 2+|0-

Herring PositiveArea 0+|12- 0+|7- 0+|0-
North Sea Inertia 0+|10- 2+|0- 0+|0-

Anisotropy 0+|3- 3+|0- 3+|0-
xcg 0+|14- 0+|0- 0+|1-
ycg 14+|0- 0+|1- 0+|0-

MicrostructureIndex 2+|2- 2+|1- 4+|0-
EquivalentArea 0+|8- 0+|5- 0+|4-
SpreadingArea 0+|8- 0+|5- 1+|0-  
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Table 8b: Interpretation of the principal components (PCs) resulting from applying PCA to the spatial indicators at age. PCA was applied instead of MFA 
when the stock has too few age classes. Values are the loadings of the indices on the PCs. Values in bold character signal a correlation greater than 0.6 in 
absolute value.  
 

Case study Index Comp1 Comp2 Comp3 Case study Index Comp1 Comp2 Comp3
Anchovy PositiveArea -0.799 0.244 -0.291 Red Mullet PositiveArea 0.38 0.867 -0.088
Biscay Inertia -0.185 -0.807 -0.291 GS10a Inertia 0.62 0.654 -0.255

AC Anisotropy 0.276 -0.722 0.416 Anisotropy
xcg 0.595 -0.032 0.135 xcg -0.795 0.382 0.457
ycg -0.56 -0.504 -0.382 ycg 0.816 -0.355 -0.439

MicrostructureIndex 0.593 0.328 -0.383 MicrostructureIndex -0.84 0.312 -0.393
EquivalentArea -0.745 0.119 0.582 EquivalentArea 0.932 -0.02 0.338
SpreadingArea -0.952 0.13 0.036 SpreadingArea 0.937 0.148 0.285

Anchovy PositiveArea 0.914 -0.225 0.131 Red Mullet PositiveArea 0.586 -0.48 0.585
Biscay Inertia 0.711 0.649 0.194 GS10b Inertia 0.374 -0.657 -0.543

EG Anisotropy -0.598 -0.17 0.725 Anisotropy
xcg -0.617 -0.619 0.183 xcg 0.892 0.378 0.087
ycg 0.871 0.128 0.238 ycg 0.762 0.506 0.104

MicrostructureIndex -0.469 0.743 0.196 MicrostructureIndex -0.642 -0.534 0.346
EquivalentArea 0.903 -0.354 -0.008 EquivalentArea 0.897 -0.281 -0.083
SpreadingArea 0.924 -0.197 0.196 SpreadingArea 0.909 -0.315 0  
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Table 9: Analysis methods applied to detect changes in the time series of raw and multivariate indices by case study 
 

 Cod Hake Herring Anchovy Red mullet 
 Barents sea Baltic sea North Sea Bay of 

Biscay 
Ionnian sea Aegean sea North Sea Bay of 

Biscay 
Bay of 
Biscay 

Thyrhenian 
sea GS10a 

Thyrhenian 
sea GS10b 

Survey type BT BT BT BT BT BT AC AC EG BT BT 
                                                                                              Biological Indices : raw 
Trend  X X X X X X  X X X 

Di-Cusum  X X X X X   X X 

Biological Indices : multivariate PCA-based 
Trend    X  X X     

Di-Cusum X X X X X  X X  X 

                                                                                              Spatial Indices : raw 
Trend   X X X X X   X X X 

Di-Cusum  X  X     X   

                                                                                              Spatial Indices : multivariate MFA-based 
Trend    X  X X   X   

Di-Cusum X X X X X X X X X X X 

                                                                                              Selection of raw indices 
MAF selection  X  X   X X    



 165

 d = 1 

 A1 
 A2 

 A3 

 A4 

 A5  A6 

 A7 

 A8 

 A9 

 d = 0.5 

 A1 

 A2 

 A3 

 A4 

 A5  A6 

 
 

Cod Barents Sea     Cod North Sea 
 

 d = 1 

 ns.n1 
 ns.n2i 

 ns.n2m 

 ns.n3i 

 ns.n3m 
 ns.n4 

 ns.n5 
 ns.n6  ns.n7 

 ns.n8 
 ns.n9p 

 d = 0.5 

 A1 

 A2 

 A3 

 A4 

 A5 

 
 
 Herring North Sea      Cod Baltic Sea 

 
Figure 1a:  Representation of the life cycle spatial pattern and its inter-annual variations in the first 
factorial plane of the MFA applied on the spatial indicators at age. Each point represents the position 
of each age in each year. The gravity center of each age is labelled. Representations for cod and 
herring.  
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 Hake Ionnian Sea     Hake Aegean Sea 
 
 
Figure 1b:  Representation of the life cycle spatial pattern and its inter-annual variations in the first 
factorial plane of the MFA applied on the spatial indicators at age. Each point represents the position 
of each age in each year. The gravity center of each age is labelled. Representations for hake.   
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Red Mullet GS10a       Red Mullet GS10b  
 
 

Figure 1c: Representation of the life cycle spatial pattern and its inter-annual variations in the first 
factorial plane of the PCA applied on the spatial indicators at age. Each point represents the position of 
each age in each year. The gravity center of each age is labelled. Representations for Anchovy and 
Red Mullet.   
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BS COD CUSUM diagnostics table

Years MFA_spatial PCA_biological Ln_Ntot Ln_Rec Lbar L25 L75 Z diagnostic
1989 0 3.4 0 -0.8 1.7 4.0 0
1990 1.5 3.7 -1.6 -2.7 1.8 0 1.5 0 alarm
1991 1.1 3.4 -4.6 -4.0 0 0 0 0 alarm
1992 2.7 3.9 -6.9 -2.8 0 0 0 0 alarm
1993 0 1.0 -4.9 0 0 0 0 -1.1
1994 0 0 0 0 0 0 0 -1.0
1995 0 0 0 0 0 0 0 0
1996 0 0 0 0 0 0 0 0 ref
1997 0 0 0 0 0 0 -1.1 0 ref
1998 0 0 0 0 0 0 0 0 ref
1999 1 0 0 0 0 0 0 0 ref
2000 0 0 0 0 0 0 0 0 ref
2001 0 0 0 0 0 0 0 0 ref
2002 0 0 0 0 0 0 0 0 ref
2003 0 0 0 0 0 0 0 0 ref
2004 0 0 0 0 0 0 0 0 ref  
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Fig. 2: Barents sea cod. Cusum diagnostic table for multivariate indices and raw biological indices (above). 
Comparison of survey Z estimate with ICES estimate (below), showing the low in the beginning of the 90s.  
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Fig.3a : Example of MAF selected raw indices that express the trend variation in biological and spatial 
indices 
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Trend method result table: 1/-1 indicates linear (+/-) trend, 1*/-1* indicates recent change only. recent is from 
2001 to 2005 (5 last years).  

Non-spatial indices  all recent           
Ln_Survey.index -1 -1           
Ln_Abundance (recruits) -1 -1           
L25 0 1*           
Lbar 0 1*           
L75 0 1*           
L50.maturity -1 -1           
Z 0 -1*           
md 1 0           
 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 
Spatial indices all recent all Recent all recent all recent all recent all recent 
xcg 0 0 0 0 1 0 1 0 0 0 0 -1 
ycg 1 0 0 0 0 0 0 0 1 1 0 1 
Inertia 0 1* -1 0 0 0 0 0 -1 0 0 0 
Anisotropy 1 0 0 -1 -1 0 0 0 0 0 0 1 
Positive area 0 -1* -1 -1* 0 -1* -1 -1* -1 -1 -1 0 
Equivalent area 0 -1* 0 -1* 1 1 0 0 0 -1 0 0 
Spreading area 0 -1* 0 0 0 -1* 0 0 -1 -1 -1 0 
Microstructure  0 0 -1 0 0 0 0 0 0 0 0 0 
No. of patches 0 1* 0 0 0 0 0 0 0 0 0 -1 
dmul (all ages) 1 1           

 
 
cod NS Cusum diagnostic table

Year MFA_spatial PCA_biological Ln_Ntot Ln_Rec Lbar L25 L75 L50.matu Z diaqnostic
1985 0 0 0 0 0 0 0 0 ref
1986 0 0 0 0 0 0 0 0 0 ref
1987 0 0 0 0 0 0 0 0 0 ref
1988 0 0 0 0 0 0 0 0 0 ref
1989 0 0 0 0 0 0 0 0 0 ref
1990 0 0 0 0 0 0 0 0 0 ref
1991 0 0 0 0 0 0 0 0 0 ref
1992 0 0 0 0 0 0 0 0 0 ref
1993 0 0 0 0 0 0 0 0 0 ref
1994 0 0 0 0 0 0 0 0 0 ref
1995 1.4 0 0 0 0 0 0 0 0
1996 0 0 0 0 0 0 0 0 0
1997 0 3.4 0 0 -1.8 -1.0 -2.2 -1.8 0
1998 0 0 0 0 0 0 -2.0 -3.4 0
1999 0 1.3 -1.3 -1.3 0 0 0 -7.4 0
2000 1.8 0 -1.7 0 0 0 0 -9.3 0 alarm
2001 2.7 0 -3.0 0 0 0 0 -9.8 0 alarm
2002 2.0 0 -4.0 0 0 0 0 -12.8 0 alarm
2003 1.7 2.5 -7.5 0 0 0 0 -16.0 0 alarm
2004 2.4 5.3 -10.5 -1.2 0 0 0 -19.3 0 alarm
2005 2.9 9.3 -15.0 -2.0 0 0 1.2 -23.1 0 alarm  

 
Fig. 3b: Trend result table (above) and Cusum diagnostic table (below) for North Sea cod. 
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Fig.4a: Time series of the indices that convey the major signal in the evolution of Baltic Sea cod. 
Indices are Abundance at age 5 and Positive area at age 5. 
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Results of trend analysis
all period recent

Z 1 -1
Ln_Abdnce 0 1

Lbar -1 0
L25 0 0
L75 -1 0

Ln_Recruit 1 0
 

 
 
cod BA Cusum diagnostic table

Year Ln.Nb.A5 PositiveArea.A5 Ln_Ntot Ln_Rec Lbar L25 L75 Z diagnostic
1994 0 0 0 0 0 0 0 0 ref
1995 0 0 0 0 0 0 0 0 ref
1996 0 0 0 0 0 0 0 0 ref
1997 0 0 -6.19 -2.2 0 0 3.9 0
1998 0 0 -4.44 0 2.3 0 4 0 ref
1999 0 0 0 0 0 0 3 0 ref
2000 -2.24 0 0 0 0 0 0 0
2001 -2.23 0 0 0 0 0 1.2 0 alarm
2002 -4.88 -3.4 0 0 0 0 0 0 alarm
2003 -6.86 -4.1 0 0 0 0 0 0 alarm
2004 -7.47 -3.4 0 0 0 0 -1.4 0 alarm  

 
 
 
Fig. 4b: trend results table (above) and Cusum diagnostic table (below) for Baltic Sea cod.  
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Nonparametric derivatives method for determining recent trends in indicator time series. For diagnostic recent (7
last years) trends: 1=increase, –1=decrease and 0=no change.

7 last years diagnostic
Indicator LinearSlope PvalueAll LinSlopeLastYears PvalueLast Linear Non Linear
L25 0.11 0.06 0.35 0.41 0 1
Lbar 0.02 0.83 0.50 0.49 0 1
L75 -0.03 0.86 1.09 0.38 0 1
ln_recruit_index 0.02 0.56 0.08 0.78 0 0
ln_survey_index_a1a5 -0.01 0.59 0.16 0.21 0 0
Z 0.04 0.22 0.30 0.25 0 1
Anisotropy.A0 -0.01 0.75 -0.12 0.42 0 0
Anisotropy.A1 0.03 0.43 -0.15 0.44 0 0
Anisotropy.A2 -0.01 0.65 -0.11 0.15 0 -1
Anisotropy.A3 0.03 0.07 -0.06 0.53 0 0
Anisotropy.A4 0.08 0.03 -0.01 0.98 0 1
Anisotropy.A5 0.05 0.35 -0.33 0.09 0 -1
EquivalentArea.A0 3.40 0.97 -432.71 0.37 0 -1
EquivalentArea.A1 -219.04 0.04 -377.25 0.34 0 0
EquivalentArea.A2 -163.07 0.19 139.89 0.83 0 0
EquivalentArea.A3 33.86 0.74 -7.25 0.99 0 0
EquivalentArea.A4 -280.06 0.01 -455.14 0.15 0 0
EquivalentArea.A5 -337.58 0.00 119.75 0.55 0 0
Inertia.A0 -72.08 0.36 -317.71 0.45 0 -1
Inertia.A1 -101.26 0.10 -243.79 0.35 0 0
Inertia.A2 -61.37 0.49 -189.64 0.66 0 0
Inertia.A3 219.90 0.03 116.00 0.83 0 0
Inertia.A4 495.50 0.01 561.93 0.56 0 1
Inertia.A5 198.69 0.46 739.79 0.58 0 1
MicrostructureIndex.A0 -0.01 0.14 -0.01 0.62 0 -1
MicrostructureIndex.A1 0.00 0.67 0.01 0.65 0 0
MicrostructureIndex.A2 0.00 0.30 -0.01 0.76 0 0
MicrostructureIndex.A3 0.00 0.96 0.02 0.13 0 1
MicrostructureIndex.A4 0.01 0.43 0.01 0.62 0 1
MicrostructureIndex.A5 0.01 0.20 -0.01 0.69 0 -1
PositiveArea.A0 -77.87 0.60 759.89 0.36 0 1
PositiveArea.A1 -59.05 0.63 1117.89 0.04 1 1
PositiveArea.A2 -190.58 0.23 903.25 0.13 0 0
PositiveArea.A3 -128.10 0.53 274.21 0.65 0 -1
PositiveArea.A4 -351.11 0.06 -19.79 0.96 0 0
PositiveArea.A5 -424.21 0.02 796.18 0.09 0 0
SpreadingArea.A0 2.96 0.97 -127.36 0.78 0 1
SpreadingArea.A1 -193.72 0.01 -194.71 0.35 0 0
SpreadingArea.A2 -127.92 0.15 244.21 0.53 0 0
SpreadingArea.A3 12.39 0.89 -129.64 0.73 0 -1
SpreadingArea.A4 -286.57 0.00 -420.07 0.05 0 -1
SpreadingArea.A5 -300.03 0.01 315.29 0.06 0 0
xcg.A0 0.02 0.26 0.07 0.34 0 1
xcg.A1 0.01 0.30 0.07 0.11 0 0
xcg.A2 0.04 0.03 0.03 0.76 0 0
xcg.A3 0.07 0.00 -0.08 0.20 0 0
xcg.A4 0.12 0.01 0.08 0.73 0 1
xcg.A5 0.16 0.04 0.25 0.44 0 0
ycg.A0 0.01 0.44 0.08 0.42 0 0
ycg.A1 0.02 0.08 0.08 0.16 0 0
ycg.A2 0.01 0.36 0.04 0.57 0 0
ycg.A3 0.01 0.38 -0.05 0.28 0 0
ycg.A4 0.03 0.20 -0.06 0.60 0 0
ycg.A5 0.05 0.09 0.14 0.31 0 0

 
 
Hake Bay of Biscay CUSUM diagnostics table
Years MFA_spatial PCA_biological Ln_N_A0 Ln_N_A1-5 L25 Lbar L75 Z EA.A5 SA.A5 PA.A5 EA.A4 SA.A4 xcg.A3 Diagnostic
1987 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ref
1988 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ref
1989 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ref
1990 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ref
1991
1992 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.4 -1.3 0.0 ref
1993
1994 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ref
1995 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.2 0.0 0.0 0.0 0.0 0.0 ref
1996
1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ref
1998 0.0 1.5 -1.1 -4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.8
1999 0.0 1.4 -1.1 -2.6 2.0 0.0 0.0 0.0 0.0 -2.0 -1.2 0.0 -1.1 -3.0
2000 1.5 0.0 0.0 -4.3 1.7 0.0 0.0 0.0 0.0 -2.4 -1.8 -1.6 -1.7 -3.0 alarm
2001 3.3 0.0 0.0 -3.2 2.6 0.0 0.0 0.0 -1.4 -2.3 0.0 -2.8 -2.3 -3.1 alarm
2002 4.3 0.0 0.0 -2.2 1.5 0.0 0.0 1.5 -1.6 -2.7 0.0 -4.3 -4.1 -3.3 alarm
2003 2.6 1.1 0.0 -2.3 2.8 1.1 1.1 1.2 -1.3 -2.7 0.0 -5.2 -5.3 -3.2 alarm
2004 3.5 1.1 1.2 0.0 3.9 0.0 0.0 1.5 -1.3 -2.6 0.0 -6.0 -6.8 -3.9 alarm  

 
Fig. 5: Trend results table (above) and Cusum diagnostic table for Bay of Biscay hake.  
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Results of trend analysis
all period recent

Z NA NA
Ln_Abdnce 1 1 (linear)

Lbar 0 -1
L25 0 -1
L75 0 -1

Ln_Recruit 0 0

diagnostic No clear diagnostic can be deduced.  
a) The senario of increased recruitment is not supported by the 0 trend of ln_rec and by the recent decreasing 

trend of L75. 
b) The senario of slower growth is not supported by the increasing trend of abundance and the recent 

decreasing trend of L25. 
 
 
 
Hake Ionian CUSUM traffic light diagnostic table

Year MFA_Spatial PCA_biological ln_Not ln_Rec Lbar L25 L75 ln_Matures ln_A2 ln_A3 ln_A4 ln_A5 diagnostic
1994 0 0 -1.8 -1.9 0 0 0 0 0 0 0 0
1995 0 1.6 0 1.5 0 0 0 0 0 0 0 0
1996 0 0 0 0 0 0 0 0 0 0 0 0
1997 4.0 0 0 0 0 0 0 0 0 0 0 0
1998 1.9 0 0 0 0 0 0 0 0 0 0 0 ref
1999 2.1 0 0 0 0 0 0 0 0 0 0 0 ref
2000 0 0 0 0 0 0 0 0 0 0 0 0 ref
2001 0 0 0 0 0 0 0 0 0 0 0 0 ref
2002
2003 2.0 2.6 0 2.0 0 0 0 0 0 0 0 0  

 
 
 
 
 
Fig. 6: Trend results table (above) and Cusum diagnostic table (below) for Ionian hake.  
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Results of trend analysis

all period recent
Z 0 0

Ln_Abdnce 0 0
Lbar 0 0
L25 0 0
L75 0 0

Ln_Recruit 0 0

diagnostic No apparent trends during the studied period.   
 
 
 
 
 
Hake Aegean Sea CUSUM diagnostics table

Year MFA_spatial PCA_biological Ln_Ntot Ln_Rec Lbar L25 L75 Z Ln_Matures diagnostics
1994 0 10.8 -2.1 0 2.9 5.4 1.5 0 0 alarm
1995 3.2 6.8 -2.7 0 0 3.3 0 0 -2.5 alarm
1996 3.6 0 -1.9 0 -2.4 0 -1.7 0 -2.6 alarm
1997 1.2 0 -1.3 0 0 -2.1 0 0 0 alarm
1998 0 0 0 0 0 0 0 0 0 ref
1999 0 0 0 0 0 0 0 0 0 ref
2000 0 0 0 0 0 0 0 0 0 ref
2001 0 0 0 0 0 0 0 0 0 ref
2002
2003 2.9 0.0 0 0 0 0 0 0 0  

 
 
 
 
Fig. 7: Time series of the survey index (SI=Ln_Ntot) and the recruit index (RI=Ln_rec), Trend results 
table (centre) and Cusum diagnostic table (below) for Aegean hake. 
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Fig. 8a: North Sea herring raw indices selected using the MAF procedure then visually chosen to 
evidence the major changes 
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Fig. 8b : North Sea herring multivariate representation of the biological (non spatial) indices (left) and the years 
(right), in the first plane of the PCA. The reference years of represented by black dots.  
 
 
 
 
 
 
 
North Sea herring CUSUM traffic light diagnostic table

Years MFA_Spatial PCA_biological diagnostic
1989 0 0 ref
1990 0 0 ref
1991 0 0 ref
1992 0 0 ref
1993 0 0 ref
1994 1.2 0 alarm
1995 4.6 0 alarm
1996 2.2 1.1 alarm
1997 0 5.1
1998 0 9.6
1999 0 9.4
2000 0 14.1
2001 0 13.5
2002 0 16.8  

 
Fig. 8c: North Sea herring Cusum diagnostic table for the multivariate indices 
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Anchovy Bay of Biscay CUSUM diagnostics table

Years PCA_spatial_AC PCA_biological_AC PCA_spatial_EG diagnostic
1989 0 5.9 0
1990 0 0 0 ref
1994 0 0 0 ref
1997 0 0 0 ref
1998 0 0 0 ref
2000 0 0 0 ref
2001 0 0 0 ref
2002 0 9.0 0
2003 0 21.3 0 alert
2004 3.0 16.7 0 alarm
2005 6.5 48.1 0 alarm   

 
 
Fig. 9: Bay of Biscay anchovy 
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Biological and Spatial 
indices  

all period 
10a&b 

recent 
10a&b 

all period 
10a 

all period 
10b 

recent 
10a 

recent 
10b 

Z 0 1     
Ln_Abdnce 0 0     
Lbar 0 0     
L25 0 0     
L75 0 0     
L50mat 0 0     
Ln_Recruit 0 0     
   
xcg (age1)   -1 1 0 0 
xcg (age2)   -1 1 0 0 
xcg (age3)   -1 0 -1 0 
ycg (age1)   1 0 0 0 
ycg (age2)   1 1 0 0 
ycg (age3)   1 0 NA NA 
Inertia (age1)   1 0 0 0 
Inertia (age2)   0 0 -1 -1 
Inertia (age3)   0 0 1 0 
Anisotropy (age1)   0 0 ND ND 
Anisotropy (age2)   1 0 ND ND 
Anisotropy (age3)   0 0 ND ND 
Positive area (age1)   0 0 0 0 
Positive area (age 2)   0 0 -1 0 
Positive area (age 3)   0 0 0 -1 
Equivalent area (age1)   0 0 0 0 
Equivalent area (age2)   0 0 0 0 
Equivalent area (age3)   0 0 0 0 
Spreading area (age1)   1 0 0 0 
Spreading area (age2)   0 0 0 0 
Spreading area (age3)   0 0 0 0 
Microstructure (age1)   0 0 ND ND 
Microstructure (age2)   0 0 ND ND 
Microstructure (age3)     -1 0 ND ND 
ND=not determined 
 
mul TS CUSUM diagnostics table

Year PCA_spatial_10a PCA_spatial_10b PCA_biological Ln_Ntot Ln_Rec Lbar L25 L75 L50.matu Z alert
1994 0 0 0 0 0 0 0 0 0
1995 0 1.2 0 0 0 0 0 0 0 0
1996 0 1.2 0 0 0 0 0 0 1.7 0
1997 0 0 0 -2.0 0 0 0 0 0 0 alert
1998 0 0 0 0 0 0 0 0 0 0
1999 0 0 0 0 0 0 0 0 0 0 ref
2000 0 0 0 0 0 0 0 0 0 0 ref
2001 0 0 0 0 0 0 0 0 0 0 ref
2002 0 0 0 0 0 0 0 0 0 0 ref
2003 0 0 0 0 0 0 0 0 0 0 ref  

 
 
Fig. 10: Trend results table (above) and Cusum diagnostic table (below) for the Red mullet in the 
Thyrrhenian Sea 
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Annex 1: Template for reporting case studies indicator-based diagnostics 

 
Case study NAME 
 
Each of the following items with comments (NA if not done)  
 
Data :  
• Map of all survey stations overlaid showing polygon used.  
• For spatial indices : 2 maps of gravity centres across years for selected ages in immature and mature ages   
• Input parameters for spatial indices : function infl() , function NBPatches() , function Microstructure() 
• Raw indices : Tables of spatial and non-spatial indices (wp2a tables 1 and 2) 
• Combined indices : (retain the 2 first principal axes) fig. of factorial representation, table of indices values  
 
Looking for changes :  
• visual inspection : plots of selected indices (raw & combined, expert or MAF-based) 
• trend plots of selected indices (provide plots, specify trend method used, fill trend diagnostic table)  
• di-cusum plots of selected indices (provide plots, fill cusum diagnostic table)  
template for diagnostic tables are in file : indic_diagno_tables_nantes.xls 
 
Interpretation : 
comment diagnostics tables results 
• trend analysis : interpretation using cause-effects table as guide line 
• cusum analysis :  
• interpretation using cusum table of selected indices 
• interpretation using cause-effects table as guide line 
 
Compare approaches (cusum/trends)  
 
What have you learned ?  
 
Summary sheet  
• Survey series  (Periods / Seasons / Type) 
• Non-spatial indices (a few words : has index been analysed ? what method for change? change detected ?) 

Abundance index , Recruitment index   
Lbar, L75, L25  
L50.maturity   
Z by year        

• Spatial indices (a few words : index analysed ? by age or stage ? what method ? change detected ?) 
Positive Area, Spreading area, Equivalent area    
Centre of gravity,  Inertia, Anisotropy      
Microstructure       

• Composite (derived) indices ( a few words : method ? index used ? components 1 & 2 dominated by which 
raw indices ? change detected ? ) 

MAF, MFA, PCA   
• Reference period (which years ? comments on choice of period) 
• Summary of results on the stock (comments on data series, ref period, changes evidenced, which method 

support summary) 
 
Comparison with traditional assessment of stock status :  
traditional assessment = scientific diagnostic by expert groups, not official advice 
short text with following topics : have alerts been triggered for similar years ? has an early warning 
been possible using indicators ? what do we gain with all indicators in comparision to abundance 
only ?  
 
Formulation of advice (based on all the above, can you formulate an advice ? ) 
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Abstract 
 
Large uncertainties in the catch data (official landings and discards) are undermining ICES' 
ability to provide valid management advice based on the conventional approach of analytical 
assessments. There is thus an urgent need to consider alternative tools that do not depend on 
long series of precise catches, with their age composition. This paper presents a few fishery-
independent assessment models developed by the EU project FISBOAT (Fishery Independent 
Survey Based Operational Assessment Tools). It also reports on rudimentary tests based on 
simulated data, following the same protocol as an evaluation study conducted by the US 
National Research Council in 1997. It appears that the survey-based assessment models at hand 
are able to reliably capture the major signal in biomass and recruitment, although they smooth 
out transient changes. However, they cannot provide absolute abundance estimates, but only 
relative values on an arbitrary scale. Their operationalisation in ICES would thus require an 
adaptation of the advisory framework, in terms of nature of the advice and definition of 
reference points; indeed, this might be needed anyway, if we were more lucid about the myth of 
VPA estimates being absolute. It is also noted that survey-based approaches have the potential 
to provide much more rapid updates of the state of stocks than catch-based methods. 
 
 
Contact author: Benoit Mesnil; Département Ecologie et Modèles pour l'Halieutique; 
IFREMER, B.P. 21105, Nantes Cedex 03, France. [tel. +33 240 37 40 09; fax +33 240 37 40 
75, e-mail Benoit.Mesnil@ifremer.fr ] 
 
 
 
Introduction 
 
All stock assessment methods (whether they involve surplus-production, delay-difference, 
stock-reduction, Collie-Sissenwine or analytical dynamic pool models) used by scientific 
organisations to advise fisheries managers on the state of fish stocks require a knowledge of 
total catches to estimate the model parameters and other quantities of management interest. 
Errors in the input catch figures translate directly into similar errors in stock abundance 
estimates (e.g., Quinn and Deriso, 1999), and if their magnitude varies from year to year the 
assessments may not even reflect the relative changes in the state of the resources. When catch 
is also the support of management control, like in TAC systems, there is often a temptation for 
fishers or states to mis-report for tactical reasons, especially when catch quotas become very 
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restrictive. This has been the case in Europe in recent years and for over a decade ICES has 
repeatedly stated that the deterioration of the catch data was threatening its ability to provide 
managers with the type of advice they require to run the current policies. 
 
In the face of this threat, the European Commission has identified the development of 
operational fishery-independent ( i.e. catch-free) assessment tools as one of the priority topics of 
research in support of the Common Fisheries Policy in the 2003 round of calls for scientific 
projects. This has been taken up by the FISBOAT (Fishery Independent Survey Based 
Operational Assessment Tools) project consortium, with participants from 11 research 
institutes, which completed its work by mid-2007. In this paper we only report on the findings 
of one work package which was tasked to "supply methods for analysing fishery independent 
stock assessment data to provide managers with relevant information about the stock and its 
exploitation". Methods are here understood to mean both the mathematical models and the 
procedures to estimate their parameters. 
 
Section 1 provides a concise overview of the six fishery-independent (F-I) stock assessment 
methods that were specifically developed, or elaborated upon for use without catch data, during 
the project. The models are presented with comments on parameter estimation issues, and 
practical guidelines or caveats regarding their use in assessment and advisory groups are 
provided. 
 
One final products of the FISBOAT project is a full evaluation of the survey based methods 
through a simulation-testing evaluation framework (operating model, harvest rule, etc.), but 
some elements are missing to run that at the moment. However, in order to gain some early 
understanding of the capabilities of the F-I models, the group had decided to carry out a simpler 
testing exercise using artificial data with known properties, following the same protocol as an 
evaluation study conducted in the USA on catch-based (mostly age-structured) assessment 
models (NRC, 1998). Sections 2 and 3 recount the conditions and results of these preliminary 
probing tests carried out on four of the six models. Section 4 concludes on the insight gained 
during the project into the potential performance of the F-I methods for assessment of stock 
status, and on some implications for the European (ICES) advisory system. 
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1. Methods considered 
 
         The F-I methods developed, or adapted, for the FISBOAT project fall into two categories: 
1) methods intended to estimate abundance, or trends thereof; this group includes stage-
structured BREM, age-structured SURBA, TSA and YCC, and length-structured LENSUR; 
2) simulation methods, to assess the effects of changes in biological or management parameters, 
represented by ALADYM. 
Key features of each method are described in this section, starting with estimation methods. A 
summary categorisation of the methods with regards to data needs and estimation approach is 
provided in Table 1. The computer codes and documentation are available on the FISBOAT 
website. 
 
 
1.1. Biomass random effects model (BREM)1 
- Model description 
The population dynamics is formulated as the difference model from Hilborn and Walters 
(1992, p. 336): 

Bt = Rt + gt Bt-1          (1) 
where Bt is the total population biomass, Rt the recruitment in biomass in year t-1 and gt the net 
biomass growth rate, which is the balance between individual growth and total (natural + 
fishing) mortality. Recruitment is assumed to follow a logNormal distribution without any 
stock-recruitment relationship: 

log(Rt) ~ N (μ, σR
2)      (2) 

Biomass growth is modelled by a random walk on the log-scale, to reflect the assumption that 
Z, which is part of g, does not vary wildly from year to year: 

log(gt) = log(gt-1) + εt
g   with εt

g  ~ N( 0, σg
2).    (3) 

gt = g t-1 exp(εt
g

 ) 
Thus both recruitment Rt and biomass growth gt are treated as random effects with parameters μ 
and σR

2, and g1 (t=1) and σg
2  respectively. 

 
The observation model has two components. The first one is for an index of total biomass at 
time t (recruits included) and the second for an index of recruits only. Both are assumed to 
follow logNormal distributions with common variance and catchability coefficient: 

log(IBt) ~ N( log(qb Bt), σib
2)    (4) 

log(IRt) ~ N( log(qr Rt), σir
2).    (5) 

In order to ensure identifiability, the following constraints are imposed: qb = 1 and σib
2 = σir

2. 
 
- Sensitivity and robustness issues 
Convergence of the parameter estimation algorithm depends critically on sensible starting 
values. The above mentioned constraints allow parameter identifiability, but the effect of setting 
qb = 1 is that biomass estimates can only be relative not absolute. In addition, the estimates of 
recruitment and catchability for recruits qr  are confounded to some degree. This appears as 
strong correlation between estimates. 
 
- Input and Output 
BREM only requires two series of survey indices in mass, one for the total population (adults + 
recruits) and one for the recruits alone; splitting out the recruits can be based on age readings 
but there are favourable cases where a reasonable cut-off size may be identified by inspection of 
the length compositions. Note that knowledge of M is not required, and that occasional gaps in 
survey series are not likely to affect the estimation. An extension handling two series of indices 
per category (e.g. acoustic and egg surveys) has been developed (Trenkel, 2006, 2007). 

                                                           
1 Contributed by Verena Trenkel, Ifremer, France 
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Seven parameters are estimated: B1 (biomass in year 1), g1 (biomass growth in year 1), log(σg) 
(standard deviation of growth), μ (mean recruitment for base normal), log(σR) (standard 
deviation of recruitment for base normal), qr (catchability of recruits) and σi  (standard deviation 
of observation error for base normal). Plugging converged estimates into Eq. 1 yields estimated 
time trajectories of relative total biomass and annual recruitment. In addition, standard 
deviations are available for biomass estimates, but NOT for recruitment estimates as these are 
random effects, not real parameters. 
 
- Implementation issues 
Parameter estimation by maximum likelihood is implemented in AD model builder (Fournier 
2005) using the random effects module. Run time for NRC set 1 was about 20 sec. Note that run 
time does not increase with the number of years. Rather it depends on how good the starting 
values are. 
 
- Miscellaneous comments 
Future recruitment could be predicted using the fitted logNormal distribution, either as expected 
recruitment or by drawing a random recruitment value from the distribution. The relationship 
between model predictions and commercial quantities is not obvious. 
 
 
1.2. LENSUR2 
- Model description 
Lensur is a newly written program for assessing a stock with only length-structured data. Lensur 
has an operating model that generates an artificial population in numbers by length class and 
time step, as specified by a set of parameters. Model observations are derived from the 
operating model in an observation model, and parameters are estimated by minimising the 
deviation of the model observations from real observations, as expressed by an objective 
function. The objective function so far is a sum of squared log residuals. A minimisation routine 
searches over the space of parameters and calls the objective function for each parameter set, to 
find the parameter set that gives the best value, i.e. the best model fit. This is regarded as the 
estimate of the population according to the data. This places the method within the framework 
of ‘statistical models’, where in this case the population is constructed so that stock numbers are 
represented by length. 
 
The method used to obtain length distributions in the population is to follow an ensemble of  
trajectories representing ‘super-individuals’ over time, each with its own growth characteristics, 
and time and length at entry (a 'Lagrangian' approach). Hence, internally the population is 
represented both by length according to a growth model, and age, represented by the time that 
has passed for each trajectory since it entered the populations. Each trajectory enters the 
population at a randomly drawn time with a certain number of fish and randomly drawn growth 
parameters. The abundance and length of each trajectory is calculated for each time step. The 
whole population is the sum of all trajectories. 
 
- Sensitivity and robustness issues 
The implementation in Fisboat further restricts the data to survey data only. This implies strong 
limitations on what can be inferred from the data in terms of population abundance and 
exploitation rates, and the method has so far primarily been used to study these limitations (see 
miscellaneous comments below). 
 
- Input and Output 
Operating model parameters are initial numbers at length, numbers (recruits) entering the 
population each year, growth parameters (k and Linf), selection at length in the fishery, annual 

                                                           
2 Contributed by Dankert Skagen, IMR, Bergen, Norway 
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fishing mortality and natural mortality. Parameters in the observation model are survey 
catchabilities. These are specified as separable, i.e. with a catchability at length and a year 
factor. The latter normally is assumed to be constant. The program allows the user to specify, 
for each parameter, whether this parameter shall be estimated by the optimisation routine, or 
remain fixed at a given value. 
 
Catches at length in each time step are derived from the abundance at length and fishing 
mortalities at length. These results are not used in the Fisboat framework, but may be useful if 
catch data (at length or in biomass) are available. 
 
- Implementation issues 
Lensur is programmed in Fortran 77, and will be implemented in FLR in the near future. The 
FLR version is a slightly reduced one, in particular with respect to input-output. 
Optimisation is by a searching routine, which is slow, but very robust. This may be an 
advantage when the method is incorporated in a framework like FLR where there is no user 
interaction when the program is run. 
 
- Miscellaneous comments 
The program can also be used as a data generator, by extracting catches or the output from the 
survey observations model as artificial data, and numbers from the operating model as the true 
stock. Noise can be added to the data output, either as random noise, as a random year factor or 
both. Such data were used in studies on performance. First, it has been confirmed that with no 
noise in the data, the model fits the data virtually perfectly, and with the right population 
numbers. Further exploration of the model performance has concentrated on the limitations in 
what can be inferred with these sparse data. Theoretical considerations and the experience 
gained using the model on artificial data, leads to the following conclusions about the method: 

• Survey indices at length by themselves carry insufficient information for a full stock 
assessment. Firstly, all such data are relative, and some additional constraint is needed 
to scale the stock abundance to absolute values. Furthermore, growth and mortality are 
confounded in the sense that they influence the length distributions in the surveys in a 
complementary way. Hence, mortality estimates are conditional on assumptions on 
growth rate. Finally, noise in the data is amplified when translated into mortality 
estimates. Therefore some constraining assumptions have to be made on the mortalities, 
and the results are conditional on these assumptions. 

• The experience so far is that simple smoothing of the indices is clearly insufficient to 
avoid undue influence of random noise in the data. Applying a penalty on the year-to-
year variation in F takes most of the noise away, and combining that with smoothing of 
the survey indices removes even more of the noise from the results. When the true 
fishing mortality is variable, such variations become damped, however. 

• Given the theoretical limitations outlined above, it appears that by assessing a stock 
with only survey indices at length in a statistical method with a length disaggregated 
model population, it is not possible to provide reliable estimates of variations in 
exploitation. However, estimates of the stock and the level of, and trends in, the 
exploitation can be achieved conditional on assumptions about growth rate. The 
estimates will also be conditional on assumptions about trends in exploitation. If these 
assumptions are realistic, the estimates obtained will be so as well. 

 
Therefore, in a management context, having length disaggregated survey data as the primary 
source of information about the stock is only likely to work if there is additional information on 
trends in the exploitation rate. The assessment will then provide the information about trends in 
stock abundance on a relative scale, which at least in principle can be translated into harvest 
rules. 
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1.3. SURBA3 
- Model description 
The basis of SURBA is a simple survey-based separable model of mortality. This model was 
first applied to European research-vessel survey data by Cook (1997, 2004), but it has a long 
history in catch-based fisheries stock assessment (Pope and Shepherd 1982, Deriso et al 1985, 
Gudmundsson 1986, Johnson and Quinn 1987, Patterson and Melvin 1996; see Quinn and 
Deriso 1999 for a summary). The separable model used in SURBA assumes that total mortality 

,a yZ  for ages a and y can expressed as: 

, ,a y a yZ s f= ×  
where as  and yf  are respectively the age and year effects of mortality. Note that this differs 
from the usual assumption in that total mortality Z is the quantity of interest, rather than fishing 
mortality F. Then, given ,a yZ , abundance ,a yN  can be derived as: 

0

0 0
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where 0a  and 0 0y y a a= − −  are respectively the age and year in which the fish measured as 
,a yN  first recruit to the observed population. Thus the abundance at each age and year of a 

cohort is given by the recruiting abundance 
0yr of the relevant cohort modified by the cumulative 

effect of mortality during its lifetime. Parameters are estimated by minimising the weighted 
sum-of-squares of observed and estimated abundance indices. All abundance estimates are 
relative. 
 
This simple basis has been expanded considerably over recent years, as the model has been 
road-tested in ICES assessment working groups (and elsewhere) and modified where necessary. 
The development is summarised in Needle (2002b, 2002d, 2003d, 2004a, 2004b) and Beare et 
al (2005), but in brief: 

• Index catchabilities and SSQ weightings can both be defined by the user. 
• Biomass indices can be used, as well as multiple age-structured indices. 
• The year-effect for the last year is set to the mean of the previous three year effects, as 

the terminal year-effect cannot be determined directly from the data (although work is 
progressing on improving this estimate; see below). 

• Age-structured indices are all back-shifted to the start of the year, using the current 
estimate of Z. This allows them to be compared directly, and ensures firstly, that 
abundance indices refer to Jan 1, and secondly, that mortality estimates relate to the 
calendar year rather than the year between successive cruises of a given survey. 

• Biomass indices are shifted forwards to spawning time before inclusion in the parameter 
estimation process. 

• Optionally, a smoothing term can be added to the SSQ to penalise excessive inter-
annual variation in estimated year effects. The degree of smoothing is determined by a 
user-defined variable λ . 

• The reference age (that is, the age at which the age-effect s is fixed to 1.0) can also be 
defined by the user. 

• Estimated variances (and thereby confidence intervals) of mean Z and recruitment are 
derived from the variance-covariance matrix of the model fit, using the delta method. 
Variances for abundance and SSB are currently being implemented. 

• Retrospective runs are generated automatically, with the last year of data being moved 
back one year at a time until half of the original time-series remains. This facility can be 
switched off by the user if required. 

• A scan facility has recently been added. With this, the user can automatically run 
assessments with a range of choices for smoothing, the reference age, and catchability 
on the first age, and evaluate model sensitivity to these essentially ad hoc settings. 

                                                           
3 Contributed by Coby L. Needle, FRS Marine Laboratory, Aberdeen, UK. 
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Planned future work includes: 

• Improving the terminal year-effect estimate. This may be possible if there are two or 
more surveys at different times of year, in which case the relative decline in indices 
during the year may give an idea of mortality during the year. 

• Implementation of bootstrap uncertainty estimation, via a multivariate parametric 
bootstrap. 

• Improved scanning procedure. 
• Restructured input dialogues. 
• Inverse-variance SSQ weighting. 
• The results of the scan procedure cannot currently be plotted within SURBA itself, 

although an SPLUS script is provided. The plotting procedure needs to be updated to 
accommodate this. 

 
- Sensitivity and robustness 
The model is most sensitive to assumptions about catchability. In particular, estimates of Z can 
be very different under different assumptions about catchability; SSB estimates are more robust. 
Z estimates can be very uncertain in any case, and it is not uncommon for there to be no 
significant evidence of any changes in the levels of Z. However, this may well be true for most 
models in which uncertainty is estimated. The ICES North Sea Demersal WG encountered 
difficulties in fitting SURBA to flatfish survey data during its 2005 meeting, and these are still 
not resolved. Finally, the automated scanning routine sometimes fails – values scanned over 
need to be interactively defined in future. 
 
- Inputs and output 
SURBA uses the Lowestoft VPA input format, and currently expects to see the full set of such 
files – which means that dummy catch-based data files had to be set up in order to analyse the 
NRC datasets. The inputs that are actually required for fitting the model are age-structured 
tuning indices, and (optionally) biomass tuning indices. The user can also define catchability 
and SSQ weightings for both types of index, along with values for the smoother λ  and the 
reference age. 
 
Both text and graphical outputs are provided by the program. Text outputs include parameter 
estimates with variances, mortality and relative abundance estimates, estimated variances for 
mean Z and recruitment, log residuals, stock summaries (SSB etc.), results of retrospective and 
scan runs, and goodness-of-fit statistics. Plots include exploratory raw-data figures (such as 
catch curves), model fits and stock summaries, residuals, and retrospective summaries. 
 
- Implementation issues 
SURBA (currently Version 3.0) is implemented in a Windows user interface, in which 
diagnostic plots are automatically generated. The run time for NRC set 1 was 6 s (standard), 40 
s (standard + 15 retrospective runs), and 7 m 47 s (105-run scan). 
 
- Predictive ability 
SURBA does not currently feature a forecasting mode, although this is planned in the near 
future. It is intended that this will roll forwards the population from different starting points 
arising from the bootstrap runs mentioned above, leading to stochastic forecasts. This will need 
assumptions about weights, exploitation, and recruitment. 
 
- Relation to management indicators 
Abundance estimates (and therefore biomass measures) are currently generated by SURBA on a 
relative scale only, and are usually plotted as mean-standardised values for ease of comparison. 
Furthermore, SURBA provides estimates of total mortality Z rather than fishing mortality F 
(although, given the tentative nature of most natural mortality estimates, this is true of catch-at-
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age methods also). Therefore SURBA can be used to provide advice on relative trends in 
abundance and total mortality, but not absolute levels. It is possible to generate pseudo-absolute 
abundance estimates by using a catch-at-age VPA to estimate survey catchabilities-at-age using 
data from some period in the past, and then applying these to recent SURBA-derived relative 
population estimates to scale them up to a level commensurate with that indicated by catch data 
(Needle 2004a). However, this requires assumptions that there was a period when catch data 
were reliable, and that the relationship between survey and fishery catchability has remained 
constant ever since, and these can be hard to maintain. It is also possible, of course, to produce 
F estimates by subtracting fixed M values from the Z estimates produced by SURBA. 
 
If SURBA (or any other survey-based approach) is to be used as a management tool, there needs 
to be a clear idea of the management framework in which such a tool would be used. In other 
words, reference points for mortality and biomass would need to be redefined on the basis of 
total mortality and relative biomass, respectively. 
 
 
1.4. Time series analysis (TSA)4 
- Model description 
TSA, or ‘Time Series Analysis’, is a state space framework for modelling a fishery. The initial 
implementation, by Gudmundsson (1994), modelled commercial catch-at-age data, with survey 
indices-at-age used as auxiliary information. Here, the framework is adapted to model the 
indices-at-age from a single survey. The state equations relate the log numbers-at-age and 
fishing mortalities-at-age in year y to those in year y–1. Log numbers-at-age in year y are given 
by: 
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Thus, log fishing mortality is separated into an age component U(a,y) and a year component 
V(y), both of which can evolve over time. Finally, the state vector consists of the n(a,y), log 
F(a,y), U(a,y), V(y) and Y(y). 
The observation equations are given by: 

),(),()(),( yayanaqyai ε++=  

where i(a,y) are the log indices-at-age, q(a) are the survey log catchabilities, and the ε(a,y) are 
assumed to be NID with zero mean and standard deviation σsurvey λ(a) δ(a,y). The λ(a) are 
initially taken to be unity, but can be adjusted later if the errors associated with some ages are 
larger than for others. The δ(a,y) are also initially taken to be unity, but can be inflated to 
decrease the influence of outliers. It is assumed that the survey takes place at the start of the 
year. 
The model is fitted using the Kalman Filter, with the parameters μ, σrecruit, σsurvey, σU, σV, σY, q(a), 
U(a,1) estimated by maximum likelihood. For identifiability, q(1), V(1) are taken to be zero. For 
stability, some constraints must be put on the q(a): the current implementation takes the q(a), a 
> 1, to change linearly with age. 
 
 

                                                           
4 Contributed by Rob Fryer, FRS Marine Laboratory, Aberdeen, UK. 
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- Sensitivity / robustness 
Good starting values can be difficult to find for a new stock: some iteration and experience is 
required. Poor starting values will either make the current implementation crash or will 
erroneously suggest that the starting values are optimal. However, once good starting values 
have been found, the implementation is robust to the addition of an extra year’s data, etc. The 
same starting values were used for all the NRC data sets (except for the clean set). 
The method works on the log scale, so zero indices must be replaced by some small positive 
value. Unity was used for the NRC data sets. This means that the method can only be sensibly 
applied to those age classes where zero indices do not often occur – typically the younger age 
classes. An option would be to group older age classes into a single plus group, but this has not 
been implemented yet. 
Very large year classes can cause a problem, because they can unduly dominate the parameter 
estimates associated with recruitment (i.e. μ and σrecruit). It is possible to reduce their impact on 
these estimates, but this is done manually following graphical inspection of standardised 
prediction errors. 
 
- Inputs and outputs 
Inputs:  
• survey indices-at-age; can handle several surveys in sequence (e.g. if there is a change in q in 

the single survey at a particular time), but not in parallel. Missing survey data are accepted, at 
the cost of increased standard errors in estimates around missing years while not causing bias. 

• if natural mortalities-at-age are provided, then (relative) fishing mortalities will be estimated, 
otherwise (relative) total mortality Z will be estimated. 

 
Outputs: 
• estimates of relative numbers-at-age with approximate coefficients of variation; these can not 

be combined across age classes (there is a separate scaling factor for each age class), so it is 
not possible to estimate (relative) biomass, etc; however, sensible proxies for stock biomass 
can be estimated; 

• estimates of relative fishing mortalities-at-age with approximate coefficients of variation; 
these can be combined across age classes, so it is possible to estimate (relative) mean fishing 
mortalities for groups of age classes; 

• evidence of persistent changes in fishing mortality, either overall, or as departures from 
separability. 

 
- Implementation 
• Fortran 90, using NAG routines. 
• Took ~ 30 seconds to run NRC set 1 on a 1.8GHz, 524MB RAM laptop. 
 
- Predictive ability 
The method can predict both relative numbers-at-age and fishing mortalities-at-age (with 
approximate coefficients of variation) as far into the future as required. 
 
- Relationship with commercial quantities 
If natural mortalities-at-age are provided, then relative fishing mortalities-at-age are estimated 
(otherwise only relative total mortalities-at-age Z are estimated). 
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1.5. Year-class curve (YCC) method5 
- Model description 
A ‘year-class’ curve is a plot of log CPUE over age for a single year-class of a species.  Marine 
fish caught in trawls typically show nearly linear year-class curves for ages that are fully 
selected.  The usual model of mortality over time t, assuming no net migration to or from the 
stock, is  

   ZN
dt
dN

=  

where Z, the instantaneous rate of total mortality, is here expected to have a negative value.  
[The absence of a minus sign before Z  is unconventional in fisheries work but leads to Equation 
(2) having all terms positive, as is conventional for regression models.]  Solving gives 
  ( )ZtNNt exp0= .    (1) 
We now assume that catch per unit effort (cpue, denoted U) is a constant proportion of N, i.e. 

qNU =  for all ages included in the analysis, and that Z represents a constant, average value 
over time.  Then, taking natural logarithms of Equation (1), restricting attention to one year-
class, c, substituting age for t, and adding a random error term, e, gives the basic model for a 
year-class curve: 
  ( ) cacca eageZUU ,,0, loglog ++=    (2) 

where cU ,0  is the cpue (or survey) index for age zero, a is the age-class, i.e. the age in years as 
an integer index, while age is age in years as a real number.   e is assumed to be normally 
distributed around zero with residual variance 2

eσ .  Additional linear terms may be added to 
equation (2) to allow for varying selectivity of the survey trawl with age, to allow for different 
RV (or commercial) fleets having different catchabilities, q, and to allow for gradual changes in 
Z over time.  The latter is achieved  using polynomials in age and year with a minimum of 
additional parameters so as to yield best precision of estimation with the available observed 
data. 
 
Different series of cpue data are likely to estimate year-class curves with different precision 
depending on the season and area covered by the fleet, on the precision of age-reading and other 
practical aspects, and on how well the chosen model fits the data.  Weighting of different data 
sets to reflect their precision with respect to the chosen model is therefore desirable.  Cotter and 
Buckland (2004) suggest that the weighting estimated for each fleet’s data set should be 
balanced with the reciprocal of the estimated residual variance specific to that fleet computed 
after the model is fitted, i.e. 2ˆˆ −∝ ffw σ  .  They describe how the method can be implemented 
using iteratively weighted least squares (IWLS) taking into account the d.o.f. contributed by 
each fleet to the estimates of each parameter.   Usually, 2 or 3 iterations produce stable values.   
Additionally, using the fleet specific residual variances, the relative precision of the different 
fleets can be compared using F tests (Cotter 2001).  Note that biased cpue series will produce 
biased weights (Quinn and Deriso 1999, p. 353).  Fleets that appear exceptionally precise should 
be scrutinised to see whether biased sampling may be the cause, e.g. due to clustering of 
observations in restricted times or places (Cotter and Buckland 2004). 
 
A year-class curve can be fitted repeatedly in a process called forward validation that is 
designed to find the most reliable model for predicting next year’s cpue.  Starting from an early 
year and proceeding forwards in the time-series, it finds the differences between the predicted 
log cpue and the observed log cpue for one year after the time domain of the data used to fit the 
model.  The preferred model is the one whose mean difference is closest to zero, and for which 
the mean square of the differences is lowest.  This is merely a simulation of a fish stock 
assessment working group making predictions each year for the coming year, then checking 

                                                           
5 Contributed by John Cotter, CEFAS, UK. 
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them when the outcome is known.  Full details of available models, fleet weighting, and 
forward validation to find the preferred model are given by Cotter et al. (2007). 
 
- Sensitivity / robustness 
Catchability must be constant over time but may vary among different surveys or fleets since 
intercalibration factors are automatically fitted if required.  Changes to the design of an RV 
survey that might cause a change in catchability (e.g. a different vessel or gear) can be 
accommodated simply by treating it as a new fleet and fitting an extra intercalibration factor. 
 
Only gradual changes of Z are allowed by using polynomials in year to a maximum degree of 3.  
This is intended to minimise the dangers of erroneously treating random measurement errors as 
trends in the year-class signal over time.  However, if sudden, real changes in Z actually do 
occur from year to year, they might be overlooked. 
 
Year-class curves can be fitted across fleets, or nested within.  Over- and under-fitting can both 
caused biased estimates of parameters.  Forward validation helps to eliminate such models 
because they tend to be poor at predicting beyond the observed domain.  The AIC may also be 
used to help with finding the best model. 
 
- Inputs and outputs 
The basic input is a standard VPA-type tuning file (Darby and Flatman 1994).  YCC software 
operates on a flat file having fleet, age, year, time-of-year, cpue, etc., so such a file may be 
utilised directly if preferred.  Year-class curves are available as plots over time, one per year 
class.  These allow the fitted model to be compared to the observed values to check that the fit is 
credible.  Relative recruitments, and Z over age by fleet are also given, along with various other 
outputs. 
  
- Implementation 
Software to fit year-class curves with all the options described here is called YCC; it is written 
in R.  The user is asked what terms are wanted in the model, whether terms are to be nested in 
fleets, whether to switch weighting on or off, whether to use forward validation, and about 
outputs.  The latter may be obtained on screen, as text files, or as graphics.  Diagnostics include 
prediction and residual errors over time, age, and year class.  Some of these outputs are 
illustrated by Cotter et al. (2007).  Run times are usually seconds but may increase to a minute 
or more when there are many fleets, iterative re-weighting, and a long period of forward 
validation.  The model may fail to fit if there are more parameters than observed vectors of 
cpue-at-age.  Missing values may either be omitted from the data set or coded as negative cpue. 
 
- Predictive abilities 
Predictions one year ahead of observed data is carried out routinely with forward validation.  
YCC produces tables of predicted cpue-at-age for the year after the final observed year together 
with prediction mean square errors. 
 
- Relationship with commercial quantities/management indicators 
Predicted cpue-at-age in terms of numbers may be converted to weights per unit of effort-at-age 
using a matrix of weights-at-age by year.  These may in turn be converted to spawning stock 
biomass per unit of effort-at-age using a matrix of maturity-at-age by year.  The software allows 
users to insert independent observed values for each year, if available.  Year-class curves fitted 
to cpue for commercial fleets could provide predicted catches from predicted cpue multiplied by 
predicted commercial effort under different fishing scenarios.  However, YCC offers no 
prediction of next year’s recruiting year class. 
 
Z is estimated numerically for each age and year from fitted curves (rather than from fitted 
parameters which may be individually biased, depending on the model).  No assumptions are 
made about natural mortality, M.  Fishing mortality, F, could be estimated if they were. 
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1.6 ALADYM simulation method6 
- Model description 
ALADYM (Age-Length Based Dynamic Model) is an age-length based simulation model 
developed in the conceptual framework of dynamic pool models, following the predictive 
Thompson & Bell (1934) approach. The model is designed to predict, through simulations, the 
effects of different fishing pressure scenarios on a single population, in terms of different 
metrics and indicators. Removals are simulated on the basis of the total mortality rate modulated 
using harvesting pattern and a fishing activity coefficient. Aladym can work in absence of 
fishery-dependent data, although its predictive capability of real catch levels can be verified 
using information on commercial catches or fishing activity per month. 
From the Aladym core model three complementary, but independent, tools have been derived:  

A) the quasi-deterministic dynamic tool named Aladym-r; 
B) the tuning tool Aladym-z; 
C) the stochastic dynamic tool named Aladym-q.  

Aladym-q adds to the same mathematical model of Aladym-r the capability to deal with the 
stochastic representation, modelling the uncertainty of estimates related to recruitment, growth 
and maturity through stochastic processes. This makes Aladym-q more suitable for estimating 
the probability associated to predicted metrics, indicators and reference points. Aladym-z has 
been developed as a specific tool, which starting from the observed values of Z and the 
description of the life and population traits is able to calculate values of total mortality which 
better approximates a given scenario. 
The model is designed to simulate population dynamics of a given population accounting for 
differences by sex in growth, maturity and mortality. All the quantities are calculated as vectors 
with an associated time step Δt (time slice=1 month). 
The population dynamics is formulated following the simultaneous evolution of several cohorts 
at month scale through the exponential population decline model, both in absence (1) and in 
presence (2) of fishing mortality: 

MN
dt
dN

−=     (1) 

ZN
dt
dN

−=     (2) 

used respectively in the form (3) and (4): 
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Δ+ =  (4) 
where j indicates the cohort, t the time, Z, M and F the total, natural and fishing mortality 
respectively. 
Initial numbers in the population are from estimates of recruitment independently obtained (e.g. 
from trawl surveys). The number of recruits entering the population in successive years can be a 
vector or is estimated from a stock-recruitment relationship (Beverton & Holt, 1957; Ricker, 
1975; Shepherd, 1982; Barrowman & Myers, 2000), with random variations. The number of the 
events (on monthly basis) generating the offsprings is an input of the model. 
The growth process is assumed according to a VBGF and a length-weight relationship; the 
maturity follows an ogive model.  
The natural mortality can be constant for each age/length or a vector by age/length calculated 
outside the model. Alternatively, it is estimated inside the model from the Chen and Watanabe 
equations (1989). 
The fishing mortality rate F(L) is modelled for each cohort using the following general equation 
(Sparre and Venema, 1998): 

)()( LSFLF axm ⋅=  

                                                           
6 Contributed by Maria Teresa Spedicato, COISPA, Bari, Italy 
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where Fmax is the maximum fishing mortality and )(LS  the proportion of retained fish. 
In Aladym the fishing mortality rate is calculated as follows:  

actaxm fLSFLF ⋅⋅= )()(  
where maximum fishing mortality (Fmax) is calculated as follows: 

minMQZF inputaxm −=  
using the input values of QZ (a Z proxy) and where Mmin represents the minimum value that the 
M vector assumes. In addition, a fishing activity coefficient (fact) is introduced in order to 
consider the possibility of a fishing ban or changes in fishing effort throughout time. 
The value of QZ by sex can be assumed, as a first order approximation, numerically equal to the 
value of Z observed that is obtained from estimations outside the simulation model (e.g. from 
trawl-survey). A better approximation of QZ is obtained using the tool Aladym-z. 
 
- Inputs 
• von Bertalanffy growth parameters by sex with associated variability,  
• length-weight relationship parameters by sex; 
• maturity ogive parameters by sex (Lm50% and Lm25%-Lm75% range); 
• natural mortality by sex (a constant value or a vector); 
• seed values (minimum, maximum, ln-mean and ln-standard deviation) of recruitment by sex;  
• proportion of offsprings entering in the stock by month;  
• stock-recruitment relationship parameters or a vector of recruit numbers by month both with 

associated variability; 
• time elapsing from spawning to birth;  
• sex-ratio (female/total) of offsprings; 
• Fmax by month or from the model;  
• QZ by sex;  
• selection ogive parameters (2 options) of the gear used by the fleet (L50% and L25%-L75% 

range, D50% in case of the selectivity option 2);  
• fishing activity coefficient by month (0, in case of absence of fishing activity). 
In Aladym-q the following inputs are also provided: 
• the number of realizations;  
• the parameters of the defined pdfs. 
 
- Harvest control rules 
The simulation approach can be used as a tool to convert survey biological information and 
relative assessment into quantitative HCRs. The options implemented in the simulation model 
are based on the following aspects: total mortality, gear selectivity (size at first capture L50% and 
selection range) and fishing activity (alone or in combination). These three are inputs that can be 
used to simulate different exploitation scenarios. The effects of HCRs (selectivity and fishing 
activity) are then analysed in terms of sustainability for the population in the long-term. For 
example, the ratio between the mean spawning stock biomass and the mean unexploited 
spawning stock biomass (SSB/USSB, output) is also estimated for each harvesting scenario.  
A vector of yield (Y) by time is also simulated, estimating the catch (C) according to the 
following general equation (Gulland, 1969): 

( )tZ
t

t eN
Z
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Δ
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where tΔ  is the time to which the catch is referred. 
Thus the catch (Yield) in the time interval (t, t+∆t) is computed in Aladym as (Sparre and 
Venema, 1998): 
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- Assumptions and sensitivity 
The basic assumptions of the model are: 
a) natural mortality as estimated reflects the rate of decline of a population for all causes 

excluding fishing; 
b) total mortality Z reliably reflects the decline of ages/sizes in the population, including the 

effects of different fishing gears; 
c) the growth, the natural mortality, and the maturity parameters are assumed constant along the 

time; 
d) given the small time interval (1 month) between cohorts the effect of the spreading of the 

lengths respect to the ages can be neglected. 
The model behaviour is influenced by the consistency between the set of life-history parameters 
and population dynamics. The model results are thus expected to be particularly sensitive to the 
stock-recruitment relationship and natural mortality.  
 
 
 
To summarise, the main features of the F-I methods reviewed are presented in Tables 1.a,b 
below. 
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Table 1. Categorisation of methods 
 
a. Technical 
 
Method  Approach Estimation Structure Input* Need M? Output 
BREM Biomass, 

Random 
effects 

Max-Lik Two-stage 
(Rec /Tot), 
in mass 

Indices by 
stage; 1 or 2 
fleets 

N Relative R & 
Btot 

LENSUR Length, 
Lagrangian 

NLLS Length Indices by L. 
class; 1 fleet; 
v.B. params 

 Annual F, 
relative N@L  

SURBA Separable Z Weighted 
NLLS 

Age Age-disagg. 
indices; n 
fleets 

N Z, relative R, TSB, 
SSB & N@age; 
conf. limits on R & 
Z 

TSA State-space, 
Time Series 

Kalman 
filter, Max-
Lik 

Age Age-disagg. 
indices; 1 
fleet 

N, but can 
be used (by 
age & year 
if avail.) 

Relative N@age 
& Z; Not B 

YCC Y-Class 
curve 

GLS Age Age-disagg. 
indices; n 
fleets 

N Z, relative R, rel. 
Bt & SSB, rel. 
fleets’ q, rel. 
precision of fleets, 
predicted indices 

ALADYM Simulation - Age-Length v.B. params, 
Z, selec 

 multiple 

* only those essential for fitting; not for derived quantities such as Btot or SSB 
 
 
b. Management measures that can be informed 
 
Method TAC Effort Gear/Mesh Time closure Other 
ALADYM (y) Y Y Y  
BREM Y Y N N  
LENSUR Y Y Y   
SURBA Y Y N (unless M is 

known) 
N (unless multiple 

surveys from ≠ 
times of year) 

 

TSA Y Y    
YCC Y Y    
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2. Testing procedure 
 
2.1. Data Sets 
 

In absence of a better alternative at the time, we resorted to the suite of data sets 
concocted for the US National Research Council rounds of tests during 1997. One advantage is 
that the outcome has been published (NRC, 1998), enabling the performance of other methods 
to be compared with that of the methods considered by that committee (which all made use of 
catch and/or catch-at-age data). The data were generated by an age-structured model, where a 
15-age population was projected over some 40 years but data for only the last 30 years were 
retained. Details of the data generation are given in Chapter 5 and Appendix E of the NRC 
report, and the main features are summarised in Table 2 below. Each data set is a single 
replication of a combination of stochastic processes7. A special comment applies to data set 3, 
which involves a change in survey vessel (and a near doubling of survey q), a feature that was 
not explicitly disclosed to the FISBOAT analysts initially and was a clear violation of a basic 
assumption in their method; however, given the knowledge of a step change in q, all methods 
are able to deal with this situation and most authors repeated the analysis with each period 
treated as a distinct survey (run labelled "set 3.2" hereafter), which resulted in improved 
performance. Also note that data set 5 simulates a case with very low exploitation rate 
(Yield/Biomass ratio in Table 2). 
 
Table 2. Specifications of the simulated data sets (expanded from NRC 1998). 
 
Set Population 

trend 
Age at 50% 
selectivity 

Misreporting Survey q CV survey q M Mean     
Y/B 

1 Depletion Lower later 0.97-1.03 Constant 0.3 0.18-0.27 0.19 
2 Depletion Lower later 0.68-0.72 Constant 0.3 0.18-0.27 0.12 
3 Depletion Lower later 0.97-1.03 Higher later 0.3 0.18-0.27 0.12 
4 Depletion Constant 0.97-1.03 Constant 0.3 0.18-0.27 0.21 
5 Recovery Constant 0.97-1.03 Constant 0.3 0.18-0.27 0.07 
6 2-way trip Constant 0 Constant 0 (clean set) 0.2 0.15 

 
Since some NRC sets are rather tough, a "clean" set (labelled # 6) was added where survey q 
has been strictly constant, and indices at age measured without error. This was also generated 
with an age-structured model comprising 15 age groups, and twenty years of data were output. 
Methods that break down on this easy set would clearly require some hard work. 
 
The data sets were circulated to methods' authors in advance of a project workshop. The main 
information that was provided is the matrix of survey indices by age and year. Weights at age, 
natural mortality (average for the NRC sets, where M varied randomly) and maturity ogive were 
also provided, in case some methods would need these data, but no information about catches 
and effort by the fishery was given. It was proposed that analysts focus on the following outputs 
for comparisons: time series of recruitment (preferably in number); time series of total biomass 
and, if possible, of total numbers; optionally, time series of SSB. 
 
Clearly these data were not adequate to test length-structured models, such as LENSUR, for 
which specific test data have to be set up (preferably providing true states, i.e. not on real 
stocks). The testing framework was also inadequate to evaluate the ALADYM simulation 
model. 
 
 
                                                           
7 The report of the 2007 Methods WG (ICES CM 2007/RMC:04, Section 2.1.2) may leave the impression 
that the test data were not corrupted with noise. We point out that the NRC sets 1-5 did include various 
elements of noise, with perhaps the most relevant for this test being a random logNormal error on the 
survey indices at age with a 30% CV. Only set 6 was 'clean'.  
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2.2. Performance metrics 
 
 The intention behind selecting the NRC test sets was that comparisons might be 
possible with the performance achieved by catch-based assessment methods as documented in 
the NRC report. Since the latter methods are deemed to provide absolute estimates of key 
management variables, the NRC Committee chose to evaluate the methods based on relative 
error statistics (i.e. [(estimated – true)/true], both estimates and truth being in absolute value). 
For F-I methods, however, a clear message from all authors is that these could only provide 
estimates of relative trends in population variables, and thus the statistics above could not be 
used. Alternatively, the following approach to a performance metric involving relative values 
was considered: for each quantity of interest, the time series of estimates, on the one hand, and 
of true values, on the other hand, are first normalised by subtracting the respective mean and 
dividing by their SE (years with NA estimates, which are specific to each method, are excluded 
from both series before computing mean and SE), which gives a common scaling; the mean 
over years (rather than the sum, to account for NA-related differences in time series' length 
among methods) of the squared deviations between normalised estimates and normalised truth 
is computed; the square root of that mean is taken as the summary statistic (kind of RMSE). 
Although this statistic is not readily interpretable to gauge the performance against standard 
criteria, it enables fair comparisons between the F-I methods (unfortunately the results of catch-
based methods are only shown graphically and not tabulated in the NRC report, otherwise the 
same statistic could have been computed and both classes of methods compared on equal 
footing). 
 
The biomass depletion rate, that is the estimate of biomass in the final year divided by that in 
the first year, as considered in the NRC tests should in principle be the same when based on 
absolute or relative estimates and was also retained as an indicator for comparisons (for those F-
I methods yielding biomass estimates), together with the NRC mild criterion that the relative 
error compared to the true rate should be within  ± 25%. 
 
As a further aid to compare methods, the estimation CVs for recruitment and biomass (when the 
method is able to provide them) obtained for each data set were also tabulated. 
 
 
3. Results of methods comparisons across sets 
 
 The relative performance of the F-I methods tested is summarised in Tables 3.a-e for 
each of the performance metrics described above. Graphical comparisons of the trajectories of 
estimates vs. the truth (both normalised) are also shown to gain more detailed insight into the 
behaviour of each method (Figures 1-4). 
 
The first thing to note is that most methods did very well with the clean set #6 (only YCC 
showed some inconsequential deviations for recruitment estimates), which is reassuring: this 
validation test indicates that there is no inherent defect in the rationale of these methods, nor in 
the computer code. 
 
These methods essentially behave as smoothers for noisy indices, and may miss quick transient 
changes in stock abundance. However, in their expected usage to evaluate "current" stock state 
by comparing present and historic estimates, none would have caused managers to be misled 
about the situation of the stock and actions to take in the last decade of the time series. For 
recruitment, the position of weak or strong year-classes is generally correct, although there are 
cases of either over-smoothing or over-reaction to the signal in the survey. 
 
Like most VPA tuning methods, these F-I methods make the strong assumption that survey q 
(by age or stage) is constant over time, and it should not come as a surprise that estimates were 
badly biased in the tests with set 3.1 where the large step change in q was ignored. In normal 
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circumstances, the assessors would be aware of such marked changes in the survey procedure 
and would adjust the treatment of their data accordingly, as exemplified by the runs redone as 
3.2. Nevertheless, this test highlights the fact that F-I methods are strongly dependent on the 
quality of the survey, notably the consistency of the survey protocol, as they use no other source 
of information which might counterbalance poor survey data. In actual life, year-on-year 
variations in survey design (e.g. due to weather or logistic constraints) or gear rigging are 
common, and users of F-I methods should be alert that they must take them into account, 
however benign they may appear at first sight. 
 
In contrast, the test indicates no particular problem with set 5, a case with very low exploitation 
rate (F << M) which may cause poor convergence of VPA based methods. 
 
Overall, based on inspection of summary statistics and patterns in the plots, all the methods tried 
in this test perform quite similarly and could be used interchangeably, depending on availability 
and familiarity with the software. There is a small practical advantage in favour of BREM which 
does not require extensive age compositions. Moreover, TSA does not (yet) provide biomass 
trajectories, and the plots of SURBA estimates show occasional wiggliness in some batches of 
years. 
 
As said earlier, it is not straightforward to compare the performance of the F-I methods with 
those of the tuned catch-based methods applied to the same data in the NRC tests, since 
estimates from the latter are not available in tabular form. Coarse comparisons with the biomass 
trajectories plotted in Appendix I of NRC (1998) indicate that catch-based methods tended to 
consistently over- or (most often) under-estimate relative to the truth, whereas F-I estimates 
wander about the true trajectory. Note in passing that with set 5, all catch-based methods under-
estimated the true absolute biomass by a considerable amount, but may have preserved the 
relative trend. More direct, albeit not necessarily easier, comparisons can be made with the 
estimates of depletion rate for those NRC runs where only the survey data (not the commercial 
CPUE series not considered here) were used for tuning. F-I methods, notably BREM, perform 
comparatively well and were generally outperformed only by the most highly parameterised 
catch-based methods. 
 
It must be kept in mind that this evaluation is contingent on, among other things, scenarios 
where the error in observation of the indices has a CV of 30%, a value which is considered 
reasonable for well-behaved surveys. If in reality these methods are applied to survey data with 
larger errors, across the series or in specific years, their reliability in advisory contexts will 
obviously be poorer. 
 
There is also the limitation that this test is based on a single replication of a stochastic data 
generation, and that a proper evaluation would require summarising over many replicates – this 
is the task of another work package in the project. We note, however, that our protocol is the 
same as the one adopted by an eminent scientific committee. 
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Table 3. Performance statistics 
 
a. RMS of normalised deviations for Recruits 
 
Method \ Set 1 2 3.1* 3.2* 4 5 Clean 
BREM 0.559 0.435 0.775 0.744 0.540 0.548 0.001 
SURBA 0.481 0.466 0.752 0.725 0.462 0.495 0.121 
TSA 0.556 0.441 0.747 0.486 0.536 0.039 
YCC 0.504 0.781 0.621 0.542 0.722 0.461 0.361 
* 3.1: set 3 assuming a single consistent survey; 3.2: survey split in two (before/after change in vessel). 
 
 
b. RMS of normalised deviations for Biomass 
 
Method \ Set 1 2 3.1 3.2 4 5 Clean 
BREM 0.207 0.211 0.805 0.524 0.194 0.197 0.012 
SURBA 0.402 0.500 0.930 0.892 0.434 0.564 0.031 
TSA     
YCC 0.182 0.187 0.869 0.347 0.135 0.146 0.152 
 
 
c. CV (in %) on Recruits estimates (average over years) 
 
Method \ Set 1 2 3.1 3.2 4 5 Clean 
BREM   62.3   
SURBA 18.7 21.7 22.7 15.5 20.7 18.1 3.0 
TSA 13.4 18.8 15.9 16.8 16.2 0.05 
YCC 44.2 10.5 10.3 15.3 11.0 8.4 23.5 
 
 
d. CV (in %) on Biomass estimates (average over years) 
 
Method \ Set 1 2 3.1 3.2 4 5 Clean 
BREM 46.3 54.6 39.9 69.2 12.1 37.0 14.4 
SURBA     
TSA* 9.5 11.7 11.2 11.9 10.9 0.04 
YCC     
* CV of GM stock number over ages 
 
 
e. Relative error (in %) in Depletion rate (Biomass in final year / in year 1) 
 Results in boldface meet NRC ±25% criterion 
 
Method \ Set 1 2 3.1 3.2 4 5 Clean 
BREM -22.6 -3.9 193.1 121.2 15.7 40.6 1.0 
SURBA -30.8 31.4 80.2 77.6 -39.8 -20.0 -5.0 
TSA     
YCC -20.1 42.5 137.9 -3.5 2.0 32.7 0.3 
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4. Conclusions 
 
Although rudimentary, and awaiting further evaluation in full-fledged management strategy 
evaluation simulations, this exercise indicates that the F-I methods developed for this project are 
promising in terms of usefulness and reliability as bases for management advice. 
 
Their main advantage, and indeed their raison-d'être, is that they are not subject to uncertainties 
in the commercial catches which have caused growing concern and controversies about 
scientific advice based on VPA approaches in recent years. Moreover, the dependence on catch 
data is the main reason for the current one-year delay between "data year" and "assessment 
year", which attracts criticism by managers that response from scientists to their requests is too 
slow. Clearly, survey-based methods can resolve this timeliness issue, as availability of updated 
information on stock state is a matter of days after a survey is completed (some overhead is still 
needed for data auditing, construction of the total area index when this involves more elaborate 
treatments than just aggregating samples, and mostly for age reading for those F-I methods 
requiring detailed age compositions). Another bonus with all the methods reviewed here is that 
their fitting procedures do not require prior knowledge of the natural mortality coefficient, 
which is a crucial ingredient in many other assessment methods and perhaps the most 
challenging parameter to estimate (M may still be needed for derived quantities, such as 
extracting F if management specifically needs it). Finally, it can be seen as an advantage that the 
methods reviewed have few if any "tuning knobs" to fiddle with. 
 
Evidently, there are a few drawbacks. One is that there is no hope to estimate absolute stock size 
(overall or for specific ages): all abundance estimates are to be treated as relative, with an 
arbitrary scaling coefficient (= survey q) between actual and estimated abundance. In itself, this 
is not necessarily an issue, and examples might easily be found in many areas where decisions 
of utmost importance to society are made in reaction to relative indicators. The problem with 
fisheries management in Europe merely arises because, decades ago, scientists successfully sold 
the idea that they had the skills to deliver advice in absolute terms and the "system" has been 
built-up on these premises. One consequence is that managers were never educated to make use 
of alternative flows of information, such as relative indicators coupled with reference points 
based on past states (if only as a cross-check of the traditional advice), and more seriously that 
scientists have never formalised and evaluated an advisory process based on such information, 
although many critics argue that allegedly absolute VPA estimates are effectively relative since 
they are scaled by input M's which are guessed rather than known. However, this is mostly a 
problem with the advisory system and it should not count against the performance of the F-I 
methods per se. 
 
A more inherent limitation of F-I methods is that they only use one source of information, and 
are thus critically dependent on the quality of survey protocols and data. Perceived year-on-year 
changes in abundance, and ensuing effects on advised management decisions, are likely to be 
very fragile to inconsistencies in the conduct of surveys (dates, geographical coverage, gear, 
etc.), and the best professional standards must be adhered to in order to reduce biases. When 
survey programmes are directed at groups of species (e.g. IBTS), the design tries to achieve a 
compromise between the needs of various species, and there are often populations whose 
distribution is only partially covered; this potential bias has to be borne in mind when candidate 
species are selected for application of F-I methods (and in any case when interpreting the results 
for advice). Finally, despite the complaint by paymasters that surveys are by far the most costly 
item in the assessment process, the implication of basing management on F-I approaches may 
well be that more, rather than less, investment in surveys is required notably for those where the 
precision of indices is near the limit of acceptability. Although gaps in survey data do not 
technically impede estimation with the methods reviewed, it is obvious that the quality of 
assessments degrades quickly when gaps occur frequently, and that the "current" state of stocks 
cannot be appraised in those years when data are missing. As a rule, surveys should be annual to 
be usable safely in the deplorably polemical context of fisheries management. 
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Fig. 1.a. BREM: Comparison of normalised series of biomass estimates (dashed) vs. truth 
(solid). 
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Fig. 1.b. BREM: Comparison of normalised series of recruitment estimates (dashed) vs. truth 
(solid). 
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Fig. 2.a. SURBA: Comparison of normalised series of biomass estimates (dashed) vs. truth 
(solid). 
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Fig. 2.b. SURBA: Comparison of normalised series of recruitment estimates (dashed) vs. truth 
(solid). 
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Fig. 3. TSA: Comparison of normalised series of recruitment estimates (dashed) vs. truth 
(solid). 
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Fig. 4.a. YCC: Comparison of normalised series of biomass estimates (dashed) vs. truth (solid). 
NB: set 3 = split survey (3.2) 
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Fig. 4.b. YCC: Comparison of normalised series of recruitment estimates (dashed) vs. truth 
(solid). 
NB: set 3 = split survey (3.2) 
 



FISBOAT Manual on Simulation Tools

1 Introduction

This document is a generic manual on the specifics of both the relevant specifications of

the observation error model, the biological operating model and the ideas behind the work

done to demonstrate the coding of harvest control rules and visualising results as well as

a gateway to the many courses, tutorials and case-study specific working examples of the

simulation framework.

In terms of which deliverables this document covers, it covers the relevant elements of

D2B.2, D4.1, D4.2, D4.3, D4.4 and D4.5.

The document is organised as follows:

1. The mathematical specifications of the biological operating model, along with details

of worked examples of how to parameterise it with standard ICES WG data;

2. The mathematical specifications of the observation error model, and the details of

the courses given and examples of how to use the observation error model given the

biological operating model results and other information;

3. How one can define candidate harvest control rules based upon survey-specific data

or stock assessment information, to then be used to define survey-based management

strategies;

4. A review of the visualisation tools employed throughout the time of the project

with particular attention given to dealing with probabilistic information and how

to relate such information to relevant stakeholders.

The FISBOAT simulation software is all written in the FLR framework:

http://www.flr-project.org/doku.php.
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This is an open source framework for fisheries modelling developed in the R language.

The FLR framework is being used for a variety of EU projects and having such a common

framework has both benefited the work in FISBOAT and vice versa for the other projects.

All software is available on the FLR project’s website and all of the tutorials and case-

study examples have been run from this Wiki website so constant reference will be made

to specific locations on this site.

2 The biological operating model

The FISBOAT project has a specific biological operating model, which differs substantially

from the population dynamics model applied in the many VPA-type stock assessment

models used in the ICES arena. This is, in part, due to the nature of some of the case-

studies in the project (some lack catch-age data) and also so as to be able to generate a

more sensible model of the case-study stocks’ dynamics. Here are is the basis behind the

biological OM:

• Time-steps are yearly and ’seasonal’ - multiple within-year periods allowed;

• Harvesting model is single-fleet: defined by a supplied selectivity; effected via

harvest rates, defined by the ratio of catch to total biomass;

• Three modes of stock-recruitment allowed: stochastic SRR relationship (B-H, Ricker,

Hockey stick); stochastic (geometric) mean recruitment; bootstrap option, given a

recruitment series.

2.1 Population dynamics

For the initial numbers, the model assumed that the population is at exploited/unexploited

equilibrium, where the initial equilibrium harvest rates are defined by h̄a,s, at age a, in

season s. If recruitment begins at ar, in season sr, then, for s = 1, ..., sr − 1, N1,ar ,s = 0,

2
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and N1,ar ,sr
= R0, where R0 is a known parameter. For s = sr + 1, ..., S, where S is the

number of seasons:

N1,ar ,s = N1,ar ,s−1(1 − h̄ar ,s−1)e
−M1,ar,s−1 , (1)

where My,a,s is the natural mortality. For ages a = ar + 1, ..., A+ − 1, where A+ is the

plus-group, and s = 1 we have that

N1,a,1 = N1,a−1,S(1 − h̄a−1,S)e−M1,a−1,S (2)

and for a = A+

N1,a,1 = N1,a−1,S(1 − h̄a−1,S)e−M1,a−1,S + N1,a,S(1 − h̄a,S)e−M1,a,S , (3)

and finally, for s = 2, ..., S and a = ar + 1, ..., A+

N1,a,s = N1,a,s−1(1 − h̄a,s−1)e
−M1,a,s−1 . (4)

This takes care of the initial population dynamics, and, for the remaining years y =

2, ..., Y the dynamics are defined as follows:

For the seasons before recruitment, Ny,ar ,s = 0; we will explain the stock-recruit process

in more detail later on; for the seasons following recruitment, the dynamics for a = ar are

Ny,ar ,s = Ny,ar ,s−1(1 − hy,ar ,s−1)e
−My,ar,s−1 . (5)

For season one, the dynamics for a = ar + 1, ..., A+ − 1 are

Ny,a,1 = Ny−1,a−1,S(1 − hy−1,a−1,S)e−My−1,a−1,S , (6)

and for the plus group:

Ny,a,1 = Ny−1,a−1,S(1 − hy−1,a−1,S)e−My−1,a−1,S + Ny−1,a,S(1 − hy−1,a,S)e−My−1,a,S , (7)

and for ages a = ar + 1, ..., A+, in seasons s = 2, ..., S, we have

Ny,a,s = Ny,a,s−1(1 − hy,a,s−1)e
−My,a,s−1. (8)
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The harvest rate, hy,a,s is defined to be

hy,a,s = κy,a,s × Hy,s, (9)

where κa,s is the selectivity function, and Hy,s is the ratio of catch to total exploitable

stock biomass. An assumption of separability can be made in the selectivity if required,

by simply fixing it equal for all years. The SSB is defined in the standard manner, but

with the inclusion of mortality before spawning in each of the seasons.

2.2 Stock-recruit behavior

If a stock recruit relationship is to be used, then the recruits are defined as follows:

Ny,ar ,sr
= F(θ, SSBy−ar ,sssb

) × eζy . (10)

In Eq. (10), F(θ, ·) is the particular stock-recruit function (Beverton-Holt, Ricker,

hockey-stick), and θ are the parameters. Notice that the delay used to relate spanners to

recruits is implicitly defined by the minimum age in the model, and sssb is the spawning

season. Note also, for reasons of common sense, that if ar = 0, then recruitment cannot

occur before spawning. The final term in Eq. (10) is the stochastic recruitment multiplier,

defined as follows:

ζy = ρζy−1 + ξy (11)

where ξy ∼ N(0, σr) and ρ is the auto-correlation coefficient for the recruitment multipliers.

If fixed geometric mean recruitment, R̂, is requested, then

Ny,ar ,sr
= R̂ × eζy , (12)

but if a recruitment time-series is supplied, then the model simply resamples with replacement

from this recruitment time-series to generate the model recruitments, but with no stochastic

error term applied - with multiple simulations, the bootstrapping procedure should realise

the recruitment uncertainty.
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2.3 Parameterising the biological operating model

The main focus of the presentation given initially at the Pasaia meeting was to show

how to parameterise the biological operating model using the sorts of data that come

from the ICES stock assessment working groups: recruitment, ssb, fishing mortality and

so on. Data such as weight-at-age, natural mortality, maturity and so on required by

the model are all the same types of data available from the ICES working groups. For

the biological operating model, we need the stock-recruit parameters (actual parameters,

variance and structure or just mean recruitment and variance) and the selectivity pattern

over time for the relevant fishery. The FLR framework allows one to estimate the stock-

recruit parameters for a wide variety of stock-recruit models and there are many ways to

estimate a selectivity pattern from fishing mortality-at-age. A complete example of how

this can be done in practice can be found here:

http://www.flr-project.org/doku.php?id=courses:fisboat ijmuiden:old hand:om

2.4 Converting from age to length

The operating model simulates population indices-at-age, but there are some proposed

harvest control rules and assessment methods that deal with length data. To this end, a

conversion method was written into the FLFisboat package, called FLal and a guide to

how to use the package can be found here:

http://www.flr-project.org/doku.php?id=pkg:flfisboat

Age-to-length conversion is the easier of the two ’directions’ - for a given growth model,

and whatever the estimation error model and variance, the expected length, ℓ̄, for a given

age, a, and a given growth model, G(·), is as follows:

ℓ̄ = G(a). (13)

Given this expected length-at-age, we also must define a partition of lengths: ℓ1, ..., ℓN ,

for the length-based return object. Given this length partition, the conversion process
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simply finds the bin containing ℓ̄, for the given age, and the value of the data by age,

year etc. is added to the length entry defined by the lower value of this length bin. If, for

some reason, ℓ̄ values fall outside the defined bins, then by default plus and minus groups

are requested - a sensible choice of length bins, given the age range and growth model,

should avoid the need for this option, and it can be switched off if required.

When converting from length to age, the fact that there are in fact a distribution of

lengths - for any given age - must be taken into account, as we are, as yet, unaware of

a perfectly estimated growth model. The methodology for this part of the conversion

process is as follows:

We first assume that the inverse growth model, G−1(·), exists and can be calculated.

For our given length, ℓ̂, what we do is to compute the expected age, given the inverse

growth and error model:

ā =

∫

L

G−1(ℓ)π(ℓ | ℓ̂)dℓ = Eπ(ℓ | bℓ)
[
G−1(ℓ̂)

]
, (14)

and, for a normal error model with standard deviation σ, we have that

π(ℓ | ℓ̂) =
1√

2πσ2
exp

(

−(ℓ − ℓ̂)2

2σ2

)

. (15)

The integration step in Eq. (14) is numerically approximated. We allow for two error

models: normal and lognormal. For the normal case, grid extrema are set-up at ±2σ from

ℓ̂ (but if the lower is less than zero we set it to length zero) and an evenly spaced length

grid of 100 points is defined between these two. For the lognormal case, we set these

extrema at exp(±2σ), so both encompass the 95 percentile of the error distribution being

used. We then, after normalising, use this discrete approximation of π(ℓ | ℓ̂) to compute

the value of ā. If, for example, ℓ̂ > L∞ for the von Bertalanffy model, then ā is set at

the maximum age, and, again, plus and minus groups act by default. The rounding up

or down of the calculated value of ā is as one would expect, in that if ā − floor(ā) < 0.5,

ā = floor(ā); if not, then ā = ceiling(ā). A simple example of how to generate length-based

survey data can be found here:
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http://www.flr-project.org/doku.php?id=courses:fisboat aberdeen:thurs morn

The biological operating model can be found in the FLFisboat package, which is a

sub-package of the FLR framework that depends on the core FLR package, FLCore.

The FLFisboat package can be found at the following location, along with relevant

documentation and the required packages:

http://www.flr-project.org/doku.php?id=pkg:flfisboat

3 The observation error model

The second main part of the software framework was to develop an observation error

model, which could simulate the known types of survey observations commonly available

and used in ICES stock assessment and elsewhere. The observation error model takes data

objects from the biological operating model, and together with information on catchability,

observation error level and structure and so on and simulates observations that can be

then used in the survey-based stock assessment methods and/or in developing survey-

based harvest control rules.

The observation error package is also an FLR-based package, and is called FLOE. It is

obviously of great use to non-FISBOAT EU projects that use the FLR framework but was

developed by this project, and is a clear indication of how the FISBOAT project work is

immediately being disseminated into the fisheries field as a whole. The FLOE package is

split into two main parts:

1. FLObsIndex: the part of the package which simulates standard survey-type observations,

such as the IBTS-type trawl surveys, acoustic surveys and recruitment surveys,

under a wide range of observation error, catchability and bias regimes.

2. FLprop: this part of the package can be used in conjunction with observations from

the FLObsIndex simulations or as a stand-alone method. Its purpose is to simulate

correlated error in simulations (ageing error or year effects, for example).
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3.1 The FLObsIndex suite of methods

The first thing to cover is the mathematical and statistical nature of the package. Speaking

generically, we assume that any simulated index, Î, can be expressed in the following way:

Î = Iβ × q × b (× or +)ǫ, (16)

where I is the ’true’ population variable being observed; q is the catchability, which in

truth could be a composite of a number of factors; b is the bias in the observations; and

ǫ is the error term, which could be additive or multiplicative. The β parameter is the

index-to-abundance power coefficient. The error term should be defined by the particular

observation error model being applied and/or assumed. This basic structure is sufficient

to generate a very wide range observations - certainly enough to cover what is normally

used as relative/absolute abundance tuning data. All the relevant parameters can vary by

age, year and season, meaning that a very wide range of regimes can be simulated. Error

structures permitted are normal (additive), log-normal and gamma (multiplicative), with

a simple lag-1 correlation effect permitted in the normal and log-normal error regimes.

The FLR webpage for the FLOE package can be found here:

http://www.flr-project.org/doku.php?id=pkg:floe:flobsindex

Numerous tutorials and courses have been run that show in detail how the relevant

methods of the FLObsIndex package can be used. The first of which was a course given

in Aberdeen in May 2006:

http://www.flr-project.org/doku.php?id=courses:fisboat aberdeen

and at the Management Strategy Evaluation course given in Ijmuiden, in the Netherlands

in November 2006:

http://www.flr-project.org/doku.php?id=courses:fisboat ijmuiden:old hand:surv
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3.2 The FLprop suite of methods

This part of the package was designed to simulate the more complex forms of error seen in

fisheries data-at-age/length. These forms of error normally correlate across age or length

- the prime example of course is ageing error - and are rarely, if ever, accounted for in all

forms of stock assessment, be they fisheries dependent or independent. The idea is that,

given proportions data, p, at the FLQuant (the basic data array object in the FLCore

package) resolution, if we assumed that these data are multinomially distributed, then

after applying the logit transformation to the data:

p̂ = ln

(
p

1 − p

)
, (17)

the values p̂ will be normally distributed. We allow for the inclusion of structured noise (to

simulate sampling/ageing error) but only along one dimension at a time. We use multi-

variate normal noise to introduce the error, but only along either age, length or year

dimensions. The noise can be structured with correlation at age or at year, for example,

but not currently for both. The reason for this is that this type of noise represents a

matrix, and matrix distributional theory is both extremely complicated and not as well

developed as vector-based theory. Even allowing for this restriction, this should be more

than enough freedom to explore many possibilities.

Given proportions data-at-age as an example py,a (from catch-at-age information, for

example), and assuming we can obtain a suitable estimate of the mean, Ey(py,a) = µ, and

the variance-covariance matrix-at-age, V ary(py,a) = Σ, we need to be able to translate

this variance matrix into logit-space, as we simulate multi-variate normal noise in the

logit-transformed proportions data in the simulations.

The delta method states that, given some differentiable transformation φ(py,a), then

the covariance matrix of this transformation, Σφ, can be expressed as follows:

Σφ
ij =

∂φ

∂pi

× Σij ×
∂φ

∂pj

, (18)

where the partial derivatives of φ(), with respect to the proportions, are evaluated at µ.
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Given the logit transformation:

logit(p) = ln

(
p

1 − p

)
, (19)

we have that the required adjustment to the known covariance matrix, Σ, is as follows:

Σlogit
ij =

1

pi(1 − pi)
× Σij ×

1

pj(1 − pj)
, (20)

where pi = µi.

The theory we use works as follows: we define a suitable adjusted covariance matrix,

Σlogit, which represents either the quant or the year dimension in the FLQuant of interest,

and we generate the required number of simulations, assuming that

p̂ℵ ∼ MV N(p̂ℵ, Σ
logit), (21)

where ℵ represents all the other quant dimensions not specified as the error covariate - in

real terms, we add a multi-variate normal vector of mean zero and variance Σlogit to every

vector of age/length/year data in the FLQuant, depending on the covariate specified.

Once this has been done, we then apply the reverse logit transformation:

p =
ebp

1 + ebp
, (22)

and re-normalise p to finally have our simulated proportions data. For a complete example

of how to use this part of the package to simulate ageing error in catch-at-age data go to

the following URL:

http://www.flr-project.org/doku.php?id=courses:fisboat ijmuiden:old hand:agerr

4 Assessment methods

FLR clearly offers a framework within which the assessment methods developed in WP3

can be incorporated, and in the next section we will see where these methods can fit into

the management strategy evaluation process. Ongoing work to achieve the incorporation

of these methods is happening and clearly offers the use of these methods to a wider

audience of potential users.
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5 Designing & defining harvest control rules

A key facet of the project is the designing of suitable harvest control rules (HCRs from

now on) using survey-based data or assessment indices, as they are key elements of any

survey-based management strategy. There can be no one single package that encompasses

all possible HCRs - there are an infinite array of possibilities. By distributing an array of

examples and the relevant documentation, what was done was to supply enough examples

and the specifics of how they can be effected within the simulation framework so as to

enable other project partners to adapt the examples as required.

To outline the mathematical considerations that are relevant we provide to examples

of harvest control rules that can be derived from either survey data directly or from

survey-based assessment methods.

5.1 HCR using relative SSB trends

The example harvest control rule we apply is one designed , and is based on year-to-year

changes in abundance indices. The HCR essentially is a TAC adaption scheme which

changes the TAC from year to year, relative to the TAC from the year before and the

status of the stock, given the information in the abundance indices of interest. The HCR

can be parameterised as follows:

∆y−1 =
Iy−1

Iy−2
, (23)

TACy+1 = ∆y−1 × TACy. (24)

where the delay effect of time y − 2 affecting the TAC in y + 1 is present because of the

delay that is intrinsic to the observable effect of changing the TAC on the stock, for this

particular management system. Here, Iy represents the trend in spawning stock biomass

(relative or absolute) and can either be from a survey directly, or have been estimated by

a survey-based assessment method. The basic idea is that the TAC will increase if the

spawning stock index is considered to be increasing, and will be decreased if the spawning

stock index is decreasing.
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5.2 HCR using trends in total mortality

A secondary option is how to define a HCR based upon trends in total mortality, not

fishing mortality, as this is a potential output of both an age-based survey or age-based

survey assessment method. The idea was to have two precautionary reference total

mortality values, one on the juvenile portion of a stock, and another on the adult/mature

portion of a stock, and to adapt the TAC relative to the trends seen in total mortality

seen on both these elements of the stock. The basis for this was to try and mirror aspects

of the actual decision rule applied to North Sea herring (a case study in the project),

but based on total not fishing mortality levels on the juvenile and adult sections of the

stock. Given our precautionary total mortality levels, Z juv
pa and Zadu

pa , the HCR is defined

as follows:

TACy+1 = TACy × min

(
Z juv

pa

Z
juv
y−1

,
Zadu

pa

Zadu
y−1

)
. (25)

The HCR defined in Eq. (25) is designed to be a precautionary ”traffic light” kind of

HCR. By this we mean that there will only be an increase in TAC if both levels of Z are

below their precautionary levels; if either is above or below then the TAC will be reduced.

If both are below their precautionary levels, then the smallest increase in TAC will be

allowed. If both are above their precautionary levels then the largest decrease in TAC will

be applied. The estimated values of Z can again be derived directly from surveys or are

estimated from the survey data using an age-based survey-specific assessment method.

The practical implementation of both of these HCRs within the simulation framework

can be found at the following URL:

http://www.flr-project.org/doku.php?id=courses:fisboat ijmuiden:old hand:hcrs
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6 Visualisation tools

The final section of the manual relates to the visualisation and communication of the

simulation results, to aid both the users and the intended stakeholder audiences to which

these results will hopefully be presented.

6.1 Graphics within FLR

The default method of plotting FLR-based data objects is to use the lattice graphics

package in R. All data objects in FLR are based on the FLQuant data object, which is

a six dimensional array that permits the storage and modelling of complex data objects.

As an example of what the lattice package can do, Figure 6.1 shows a lattice-plot of the

fishing mortality-age for the North Sea herring Working Group estimates.

Using such plots is very useful to the user - particularly when doing exploratory data

analysis and when parameterising the biological and observation error models. As an

example, looking at trends in fishing mortality over time allow us to look for potential

trends in selectivity over time, and whether we should be including such effects in our

operating model.

In terms of plotting the results of management scenarios for the user to see the probabilistic

dynamics of future key stock indices, under a given management scenario, the lattice

package (using the bwplot() method) allows one to plot such quantities - see Figure 6.1.

6.2 Summary plots for stakeholders

Communication of results is obviously a vital part of any process that involves numerous

stakeholders with different interests and levels of understanding. To this end, after

consultation with the various members of the project as to what would be a useful type

of summary plot, we designed such a plot. The idea was to have a plot that encompasses

the relevant indices of interest for all stakeholder parties. For example, managers and
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Figure 1: Lattice plot of the estimated fishing mortality-at-age for the North Sea herring

stock.
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Figure 2: Boxplot of the past and future SSB for the North Sea herring stock under a

particular management scenario.
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commissioners will perhaps be more interested in the stock status indicators (SSB, average

exploitation rate etc.) whereas fishermen will perhaps want to see projected catch and

the inter-annual variation in the catch, as well as stock status. The result was a plot that

is on a single page, but contains the following, for a specified time window:

• SSB dynamics;

• Recruitment dynamics;

• Mean (age-average) harvest rate - age range can be specified;

• Catch biomass;

• Inter-annual CV in the catch;

• Probability that SSB is less than a specified limit point.

Figure 6.2 shows an example plot for a particular management scenario run for the

North Sea herring case study work.
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Figure 3: The FISBOAT management scenario summary plot which is documented and a

feature of the FLFisboat package.
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1. INTRODUCTION 

The development of time-series of indicators from fish surveys and fishery-

independent sources has been highlighted as an alternative option to using fishery 

dependent data to assess the status of a stock. Indicators that could be used for this 

purpose have already been presented in previous sections of this report. Although it is 

important to identify new types of data or uses of routinely collected data that can 

make stock assessments less dependent on certain types of information, such as 

fishery-dependent data, it is equally important to have a clear picture of the benefits 

and shortcomings of formulating management advice using these data. To this end, 

simulation evaluation methods can be very useful since, using simulated data (so 

allowing the level of error or bias to be controlled), we can evaluate the merits of 
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different types of assessment approaches and management options. For this reason, a 

simulation evaluation framework was developed within the FISBOAT project and 

was used to evaluate the ability of survey-based assessment procedures to capture 

changes in population biology and test the sensitivity of the assessment procedure to 

uncertainties in survey estimates in order to explore alternative survey designs and 

guide the adoption management strategies.  

 

The simulation-evaluation framework includes a population dynamics model, an 

observation model, an assessment model and a harvest rule model, which can be 

either model-based (using the results of assessment models) or model-free (based on 

the survey indices directly). A detailed description of all components of the FLR 

framework is presented in another FISBOAT document. Here, we present the results 

of the analysis conducted using this framework. The section that follows describes the 

case studies (reference species) chosen as representative ones for this part of the 

analysis. Evaluation of survey-based methods with respect to robustness, precision, 

capability to capture stock trends and data requirements, fishery yield, and stock risk 

requires the adoption of criteria that will determine the performance of each approach. 

Thus, the third section of this report provides the performance statistics that have been 

chosen for this purpose. The section after that presents a summary of the results of the 

analysis conducted under each case study. A general discussion of those results is 

provided in the last part of this document. Interested readers are encouraged to refer to 

supplementary material (individual case study reports annexed) for a detailed 

description of the parameterisation of the framework and the results of the analysis 

under each case study.  

 

2. REFERENCE SPECIES 

a. Herring 

Herring (Clupea harengus) is one the most important commercial species taken in the 

North East Atlantic. While the fishery dates back at least to the middle ages, it 

expanded in the 19th century to respond to the need of industrialised cities. During the 

20th century, the rapid development of the industrial fishing of herring led to a 

collapse in the 1970s with recovery made more difficult by juvenile bycatch by the 

sprat industry.  
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Following the two severe declines (up to 1977 and up to 1997), the North Sea herring 

became the first stock in the North Sea managed through the implementation of the 

precautionary approach. ICES classifies the stock as “being at risk of having reduced 

reproductive capacity and at risk of being harvested unsustainably”. The lower 

biomass reference point (Blim), below which there is an aggravated risk of low 

recruitment, is set at 800 000 tonnes and triggers an emergency plan until the upper 

reference point – Bpa, set at 1 300 000 tonnes – is reached. 

 

b. Bay of Biscay anchovy 

The Bay of Biscay anchovy (Engraulis encrasicolus) is an important species for the 

Spanish and French fleets. Two direct surveys, Acoustics and Daily Egg Production 

Method (DEPM), are conducted in spring every year to assess the state of the stock. 

Based on these direct population estimates and on data from the commercial catches, 

the integral assessment of the stock is conducted by ICES in the Working Group on 

the assessment of Mackerel, Horse mackerel, Sardine and Anchovy (WGMHSA).  

 

Currently the biological reference points for the stock, Blim and Bpa, are set at 21 000 

and 33 000 t respectively. Although there is no management plan developed, the stock 

has been traditionally managed by a fixed annual TAC (Total Allowable Catch) of 30 

000 or 33 000 t.  

 

Since 2002 the stock is at very low levels, being in 2005 the lowest of the historical 

series. After the failure of the fishery in spring 2005 the fishery has been closed 

successively for the second half of 2005 and 2006. In 2007 only experimental fishing 

with spatio-temporal restrictions has been allowed and the STECF has advised that 

any fishery reopening should not be considered until June 2008, when the results from 

the spring surveys become available.  

 

As anchovy is a short lived species, the population is very dependent on the yearly 

incoming recruitment. Therefore, knowing the recruitment level beforehand can be 

very helpful for the development of any management plan. Currently, various juvenile 

surveys aiming at estimating recruitment and better understanding the recruitment 

process are being conducted but their results are not yet used for any management 

advice.    
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c. North East Artic Cod 

The NEA cod is economically important for several countries, e. g. Norway and 

Russia. The stock is an important predator in the Barents Sea ecosystem. There have 

been observed large variation in growth rate, mean weight at age, maturity and degree 

of cannibalism. These fluctuations have been linked to water temperature, food supply 

and abundance of cod and capelin (Annon 2006). ICES describe the stock as 

overexploited in terms of fishing mortalities in relation to highest yield and agreed 

target. The SSB have been increasing since 2000 until 2004 and decreased in 2005. 

The catches have increased since 2000 until 2005. 

 

d. North Sea Cod 

Since the 1970s the stock of North Sea (NS) cod (Gadus morhua) has been 

decreasing. ICES classifies the stock as “being at risk of being harvested 

unsustainably”. Since the late 1990s, several cod recovery plans have been adopted 

with the aim to increase the spawning stock biomass (SSB) of NS cod above the 

precautionary limit (Bpa) of 150×103 tonnes (t). However, stock assessment models 

have estimated a continuing decline since, SSB being well under the 70×103 t limit 

(Blim) below which the stock is expected to suffer reduced reproductive capacity.  

Although official catches (reported landings and estimated discards) are at an all-time 

low of around 35×103 t in the past years, surveys indicate that year classes are 

depleted faster than one would expect from these catches. This points to unaccounted 

removals, which are assumed to originate mostly from illegal fishing activities.  

 

Management of NS cod traditionally rests on harvest control rules (HCRs) that target 

fishing mortality. While survey data are used to calibrate VPA-type assessment 

models, estimates of fishing mortality are still dominated by official catch figures. 

Consequently, estimated trends may be misleading whenever official catches are not 

representative of the true catches, a situation that readily applies to NS cod.  

 

3. PERFORMANCE STATISTICS 

In order to summarise the results from the simulations and evaluate the performance 

of the different harvest control rules, a series of performance statistics need to be 

defined and calculated. These performance statistics have to be related to the 
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management objectives set for each of the stocks. Thus, in general terms, at least two 

groups of performance statistics can be distinguished: the ones related to the state of 

the stock and the ones related to the yield. In what follows we present a series of 

possible performance statistics within each of these groups: 

 

a. Performance statistics related to the state of the stock 

• Probability that spawning stock biomass (SSB) is below some biomass 

reference point, Bref , at least once in the series 

• Probability that SSB is below some biomass reference point, Bref (all 

years and iterations) 

•  Probability that SSB is below some biomass reference point, Bref in the 

final year 

• Average or median number of years necessary to get SSB above Bref  

 

b. Performance statistics related to yield 

• Average or median catch over years and iterations 

• Standard deviation of the average catch or the average of the standard 

deviations 

• Average or median percentage of interannual change in catch and/or in 

total allowable catch (TAC) 

•  Standard deviation of the percentage of interannual change in catch 

and/or TAC 

• Probability that actual catch is below TAC (i.e. that the TAC is above 

the exploitable biomass level) 

•  Probability that the fishery is closed (i.e. that the TAC is zero)  

  

4. SUMMARY OF RESULTS 

Under each case study, the parameterisation of the framework aimed to simulate key 

characteristics of species dynamics and exploitation, and of survey data collection and 

was based on historical data (see individual case study reports annexed). In this 

context, simulation of sources of uncertainty in fishery-independent abundance 

indices considered the effects of errors in the calculation of those indices based on the 

information available for each of the reference species. The error term considered in 
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the calculations for herring incorporated ageing error variability while a general error 

term was included in the simulations in the Bay of Biscay Anchovy, North East Artic 

Cod, and North Sea Cod reference cases. Different levels of uncertainty were used to 

test the robustness of the assessment results and management advice. The simulated 

abundance indices were either used directly as an input to a harvest control rule or 

were first processed using a stock assessment model. The stock assessment models 

and the general form of the harvest control rules considered have already been 

described in another FISBOAT document (FLR tools). The specific HCRs applied in 

each reference case are described before the description of the main results. 

 

a. Herring 

Harvest control rules 

 
Four versions of the HCRs were used in the calculations for herring. The first model-

free harvest control rule implemented is based on observation index: 
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The observation index, yI , is the output of the observation error model and for this 

calculation, it tracks changes in SSB. The value of the TAC for the next year will 

depend on the TAC of the current year and the ratio of the observation index of the 

current year and the observation index of the previous year. If the ratio is larger than 

one this means there is an increase in the observation index which can be interpreted 

as an increase in the SSB of the stock so catches can be raised proportionally. 

 

The second model-free harvest control rule implemented in this work is based on 

relative SSB trend from the acoustic survey data: 
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Relative SSB trends are calculated for all years from the beginning of the simulated 

survey (1990 in this study) until the current year of the simulation: 
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The index used in the calculation is the output of the observation error model, the 

same as the one used in the first harvest control rule. Changes in the TAC of the 

subsequent year will be proportional to the ratio of the apparent relative SSB trend in 

the current year and the one of the preceding year.  

 

The third harvest control rule is, again, a model-free one. For this harvest control rule 

we need an age non-aggregated index as 2 age groups (0 to 1 and 2 to 6) are 

distinguished in the calculation of the TAC: 
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The variation of the TAC of next year will be inversely proportional to changes in 

total mortality estimated along cohorts from the survey ( ]1,0[,1−yZ  and ]6,2[,1−yZ  for age 

groups from 0 to 1 and from 2 to 6, respectively). Values of the total mortality rate at 

age at precautionary level (ZPA) for each age group ( PAZ ]1,0[  and PAZ ]6,2[ ) derive from 

other parameter values defined by ICES (i.e. Bpa, see section 2a). It is a harvest 

control rule that prioritises the precautionary approach as the variation in the TAC 

will depend on the smaller of the two ratios. 

 

The last harvest control rule implemented is a model-based as uses outputs of the 

YCC (Cotter et al. 2004) assessment.  
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It is quite similar to the previous one. The major difference is that the harvest rate is 

estimated by the assessment and not directly from the survey.  

 

Results 

The biological model was parameterised using ICA results and ICES working group 

settings. Data provided by FRS Aberdeen begin in 1960. Those data contain stock 
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numbers at age, fishing mortality and biological information required by the operating 

model. The population dynamics model starts in 1960 and runs to 2006. 

 
The model showed that without an observation error in the survey the first two HCRs 

led to an increase in the SSB and catches and a reduction in the interannual variability 

in catches. Although the use of a Z based HCR like the third one also gave results that 

indicated a potential beneficial effects on the stock the picture was less clear than with 

the previous two HCRs. The inclusion of observation error in the survey did not affect 

the qualitative results of the model but increased the uncertainty in the data making 

any benefits from the application of the HCRs less evident. Despite that, the 

application of the SSB based HCRs continues to support an increase in SSB and 

catches. On the other hand, the third HCR (Z-based) appears to provide greater 

protection to the stock leading to increases in the stock size which are more 

significant that those predicted with the previous two HCRs. However, that comes 

with a reduction in catches which nevertheless are maintained above the minimum 

catches observed in the past. The model based HCR (YCC) also favours stock 

rebuilding at the cost of reduced caches. However, although the third HCR was able 

to respond to increases in SSB by increasing the catches (even though slowly) the 

latter HCR kept catches at very low levels even after considerable increases in SSB. 

 

The introduction of low level of noise (random value between 0 and 5%) in the 

acoustic survey does not make noticeable changes in the outputs of scenarios using 

SSB-based harvest control rules contrary to those based on Z. In fact, for the SSB-

based HCRs, the shape of the curve of the SSB and the averaged value of the SSB in 

the final years are similar. With a HCR based on Z, the noise modifies significantly 

the shape of the SSB curve: dome-shaped without noise and continuous increase with 

noise. Also, catch increases very quickly without noise while they start by decreasing 

when noise is taken into consideration. SSB-based HCRs seem to be more robust to 

the inclusion of noise in the acoustic survey than the Z-based HCR as outputs do not 

change significantly with the noise. 

 

When testing the sensitivity of the results to the stock-recruitment functions used, 

noticeable changes can be observed but they are linked with the HCR used and the 
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taking or not into account of noise. Again, changes are more profound with Z-based 

HCRs. 

 

b. Bay of Biscay anchovy 

Harvest control rules 

 

Four HCR’s defining the TAC based on fishery independent information have been 

tested and compared to the current constant TAC management. Only age-aggregated 

abundance indices were considered for this species and no assessment procedure was 

applied. So, all the HCRs tested are SSB-based and model-free, i.e., based directly on 

the SSB observations from the surveys ( yy BSSI ˆ= ).  The simplest of this type of 

HCRs is: 
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A variant of this HCR can be obtained by simply adding a restriction of +/- 20% on 

the inter-annual variation allowed to the TAC: 
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The potential benefits of including a recruitment index ( yR̂ ) for setting the TAC was 

analysed by considering the following HCR: 
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Some of the indicators and corresponding methods developed from the surveys in the 

indicator-approach in WP5 have been tested in their ability to trigger an alarm, even 

when the abundance indices from the surveys do not indicate a downwards trend in 

the population level. In order to test how an alarm triggering indicator (i.e. a binary 

index that takes the value 1 when the alarm is triggered and 0 otherwise) could help 

improving the performance of the HCRs the following HCR was considered: 
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That is, when the indicator triggers an alarm (i.e. 1ˆ =yA ) immediate action is taken 
and the TAC is reduced automatically by a fraction α .   
 
The alarm-triggering binary index, yÂ , has been simulated as follows: When the true 

population biomass is below Blim, the probability that an alarm is triggered is of 0.9, 

i.e.:  

 
                    9.0)B|1ˆ( lim =<= yy SSBAP ,                                                               (10) 
 
and when the true population biomass is above Blim, the probability that a false alarm 

is triggered is of 0.05, i.e. 

                              05.0)B|1ˆ( lim =≥= yy SSBAP ,                                                    (11) 

corresponding to a relatively good indicator, with low type I and type II errors.  

 

Results 

The operating model for the Bay of Biscay anchovy has been parameterized based on 

the results from the Integrated Catch-at Age (ICA, Patterson and Melvin 1996) from 

the latest WGMHSA (ICES 2006), in which the population is structured in 6 age 

classes (from 0 to 5+) covering the period from 1987 to 2005. 

 

The traditional management procedure for this stock sets the TAC constant at 30 000 

t. Thus, this option was tested before any other HCR was used. The calculations 

showed such a management approach results in a high risk for stock collapse even if 

the stock before the application of this TAC is not overexploited. 

 

The performance of the first of the HCRs presented above appears to depend on the 

starting conditions and especially the starting TAC. Starting from the current stock 

situation with a very low TAC then the rule will result in stock rebuilding and a slow 

increase in catches. However, if we keep the fishery closed for two years and then 

start with the usual TAC of 30 000 t and a less depleted stock, then the rule tends to 
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favour small changes in TAC and thus any increase in population size is achieved 

much slower than in the former case. A similar dependency on the initial conditions is 

observed with the remaining HCR tried.  

 

For the second HCR, the restrictions on inter-annual variability in the TAC decreased 

slightly the catch levels while increased the population levels. The use of the 

recruitment index in the HCR (third HCR) allowed adjusting the TAC with a better 

knowledge of the situation of the stock in the next year. This led to larger catches 

while keeping the depletion probability of the stock low (below 20%).  The last HCR 

of those shown above (i.e. the one incorporating the alarm triggering indicator) with a 

highly risk-averse reduction factor appears to provide better protection against stock 

depletion than the other rules. 

 

c. North East Artic Cod 

Harvest Control Rules 

Three HCRs were considered that used a PID-controller as described in (Bogaards 

2007); two Z-based (a model-free and a model-based one) and one SSB-based. The 

HCRs were parameterised based on the results of deterministic calculations and then 

were used in stochastic calculations. 

 

The HCR is of the form (see Bogaards (2007) for details) : 
 
 TACy+1 = RT * f(µy) * TACy                                                                               (12) 
 
Where 
 

           

 
And the response from the HCR is: 
 
  
 
And the error is: 
 
 ey = (signaly - ref.point)/ref.point 
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Results 

The model was conditioned using historical data from ICES form the period of 1984 

to 2005. The last year with historical data is 2005, so the simulation starts in 2006.  

The HCR based on information in Z is very sensitive to noise in the survey index as 

well as uncertainty in key biological parameters such as natural mortality. The stock 

did not reach equilibrium with this rule but showed a steady increase to sizes much 

greater than those observed in the past. The catches on the other hand were reduced 

and the average values remained below the recent catches. A Z-based HCR with a 

signal that was analysed using a stock assessment model (YCC) was also not able to 

control the stock in a better way than that observed with the previous HCR. There can 

be many explanations for this; we may have not chosen the best regression model 

within YCC, or the best signal from the assessment. An assessment tool can smooth 

the signal from a survey but if the signal is weak such analysis might reduce the value 

of that signal.  

 

The chosen SSB-based HCR was able to stabilise the stock at an average level within 

the observed biomass and was able to control the stock even with moderate levels of 

noise in the survey index. However, the risk that the stock will collapse remained 

considerable indicating that a strict control and monitor of the stock might be needed 

if such a rule is chosen for the management of this species. 

 

d. North Sea Cod 

Harvest Control Rules 

Three types of HCR were investigated; one based on SSB and the other two based on 

Z, one model-free and the other based on a linear trend estimated by YCC all of 

which were of the general form (see Bogaards 2007 for details or the individual case 

study report for North Sea cod in annex): 
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In the SSB-based HCR, only a moving target (previous years' index) was evaluated. 

In the Z-based HCRs, both moving targets (previous years' index) and fixed targets 

(absolute mortalities or stable mortality) were evaluated. Tuning was done according 

to modified Ziegler-Nichols settings, in order to obtain a smooth response in the 

control signal. 

 

Results 

The operating model was parameterized using ICES WG estimates as of 2006 (data 

for 1963-2005, plus group at age seven).  

 

The SSB-based HCR chosen as the most appropriate one hardly ever resulted in stock 

collapse and led to stock increase above the reference level within a few years of its 

introduction. Increased survey noise reduced the potential of the HCR to prevent 

stock decline and reduce interannual variability in catches. Nevertheless, even with 

high levels of noise the HCR performed. It also appeared to be robust to low levels of 

misreporting. Calculations with varying forms of a Z-based HCR that used  year-class 

curve analysis (YCC) also showed that a parameterisation could be found that can 

eliminate the risk of stock collapse. However, the average annual catch supported by 

this rules was much smaller than that found when the SSB-based rule was used while 

its robustness to misreporting was lower than that of the SSB-based rule. The chosen 

tuning method was not able to produce a satisfactory control signal when the Z-based 

model-free HCR was used and therefore, this HCR was not considered further. The 

results with the other two rules depended upon the assumptions about the biology of 

the species (i.e. stock recruitment relationship, etc.) 

 

 

5. DISCUSSION 

For herring, HCRs based on SSB index tend to be better options than the one based on 

Z. It is worth noting though that the way Z is used in the harvest control rule tends to 

limit the increase or decrease of the TAC. This is because the TAC for the following 

year depends on the minimum of the two Z ratios (age class 0:1 and age class 2:6). 

Thus it is smaller than if all age classes were fused. More Z-based HCRs might also 

need to be considered for a thorough evaluation of the potential of such rules to 

provide robust management advice. Nevertheless, the analysis showed that it is 
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possible to manage the North Sea herring stock using only fishery independent data 

with low levels of noise in the survey. It highlighted though the fact that the efficiency 

of a management approach depends not only on the choice of the HCR but also on the 

level of understanding of key biological processes (e.g. the stock-recruit function), 

and the assessment method. 

 

For Bay of Biscay anchovy, only SSB based and model free HCRs were evaluated. 

For a short lived species as this, variations in Z mainly reflect the changes on the 

yearly incoming recruitment, so that Z-based HCRs are considered inappropriate. 

SSB-based HCRs proved to be useful to modulate the TAC. However, when the stock 

is depleted, more restrictive management measures seem to be needed until the 

population recovers within safe biological limits. Additional survey indices, such as 

the recruitment index and the alarm triggering indicator, resulted to be useful to 

improve the performance of the HCR: the former, in terms of maximizing catch while 

keeping the population within safe biological limits, and the later, in terms of 

reducing the stock collapse probability. In general terms, and as expected, the more 

precise the survey indices were, the better the performance of the HCR was.      

 

For North East Artic cod, the results showed that if one allows for large inter-annual 

variation in TAC it is possible to manage the stock without data from the fisheries 

providing that a biomass index is available. However, the effectiveness of a HCR is 

very sensitive to variations in the recruitment. The Z-based HCRs on the other hand 

appear to be very conservative favouring increases in stock size. Although this might 

not be desirable in the context of this study, the results show that such rules can also 

be of value especially in cases in which the recovery of the stock receives priority. 

 

For North Sea cod, it was found that model-free estimates of Z could not serve as the 

basis for a sensible HCR, nor did YCC-based control with a fixed target. HCRs based 

on survey SSB yielded higher average annual catches, but also a higher inter-annual 

catch variability, as compared to the more conservative HCRs based on YCC. The 

latter appear more robust to changes in survey measurement error, but survey-based 

HCRs were comparatively more robust to misreportings. The study showed that, in 

principle, it is possible to obtain excellently performing HCRs based on survey-

derived information only. However, performance of HCRs is strongly dependent on 
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the type of stock-recruit relation used. Hence, instead of aiming to maximize catch 

based on modelling assumptions it is better to strive for a robust management, that 

performs reasonably well given the uncertainties in recruitment of North Sea cod. 

 

The scenarios considered in the four case studies showed that very conservative HCRs 

are needed to control a system with high variability regardless of whether that comes 

from external factors (e.g. high misreporting or uncertain survey results) or from the 

stock itself (e.g. yield is sustained by a couple of year classes, etc). This study 

assumed that only one index was available per year which, however, was unbiased; 

Availability of more indices may provide more information so that we are able to 

control the stock within the uncertainties in the model including potential bias in the 

indices. 

 

The results of this analysis showed that survey-based indices could support fishery 

management when the appropriate HCRs are in place. However, they cannot 

eliminate the complexity introduced into fisheries management by limited knowledge 

of stock and fishery behaviour (complications that conventional fishery management 

also has). The benefits with using the survey based indices is that scientists can use 

the knowledge acquired through exercises as those presented here to modify and 

improve their survey design to provide case-specific indices based on the 

characteristics of the system and the requirements of the management approach 

chosen. The fact that catch data are not necessary to provide management advice also 

means that typical problems related to fishery dependent data such as catch 

misreporting can be avoided. The fishery models used in this analysis are quite simple 

and do not allow evaluation of the performance of the HCRs in terms of the fishery 

and economical and social issues. Although such aspects could be equally important, 

their consideration in the calculations was beyond the scope of this analysis. 
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Document 6: Simulation Evaluation with ALADYM – Methods  
 

***** 
 

Suite of 3 documents on ALADYM tools:  
Aladym-r, Aladym-q, input spreadsheet description 

 
Contribution to the FISBOAT project  

(EU FP6 STREP n° 502572) 
 

***** 
 
 
The quasi-deterministic tool Aladym-r 
 
 
 
SIMULATING POPULATION DYNAMICS. ALADYM MODEL (V 08) 
 
Lembo G., A. Abella, F. Fiorentino, S. Martino and M.T. Spedicato (SIBM) 
 
 
INTRODUCTION 
ALADYM (Age-Length Based Dynamic Model) is an age-length based simulation model 
developed within the conceptual framework of dynamic pool models, following the predictive 
Thompson & Bell (1934) approach.  
The model is designed to predict, through simulations, the effects of different fishing pressure 
scenarios on a single population, in terms of different metrics and indicators. Removals are 
simulated on the basis of the total mortality rate modulated using harvesting pattern and a fishing 
activity coefficient. Aladym can work in absence of fishery-dependent data, although its 
predictive capability of real catch levels can be verified using information on commercial catches 
or fishing activity per month. 
From the Aladym core model three complementary, but independent, tools have been derived:  

A) the quasi-deterministic dynamic tool named Aladym-r; 
B) the tuning tool Aladym-z; 
C) the stochastic dynamic tool named Aladym-q.  

The core Aladym model is described in this chapter together with Aladym-r and Aladym–z, while 
Aladym-q is described in the following one.  
 
General assumptions 
The basic assumptions of the model are: 
• natural mortality as estimated reflects the rate of decline of a population for all causes 

excluding fishing; 
• total mortality Z reliably reflects the decline of ages/sizes in the population, including the 

effects of different fishing gears; 
• the growth, the natural mortality, and the maturity parameters are assumed constant along the 

time; 
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• given the small time interval (1 month) between cohorts the effect of the spreading of the 
lengths respect to the ages can be neglected. 

 
DERIVATION 
The quasi-deterministic dynamic tool Aladym-r 
General framework 

The model is designed to simulate population dynamics of a given species accounting for 
differences by sex in growth, maturity and mortality. All the quantities are calculated as vectors 
with a time step Δt (time slice=1 month).  

An operational framework of the Aladym-r model is in fig.1. The step A) regards the input 
and initialization. In order to generate an unbiased initial population, the number of runs specified 
by the user (e.g. 100) is performed in this step, randomly varying the recruitment, the growth and 
the size at maturity parameters according to the values and distributions specified by the user. The 
user can choose among the following distribution type: log-normal, normal, gamma and uniform, 
for the parameter t0 a uniform distribution is associated by default. 
Two populations are generated: the exploited (where total mortality is acting) and the unexploited 
one (where natural mortality only is acting).  
The obtained initial populations enter in the start loop (or seed run) (step B in fig 1), where the 
dynamics is formulated following the evolution of several cohorts at monthly scale. Here the 
number of recruits entering in the population is generated from a stock-recruitment relationship. 
Alternatively, it is given as an input vector. In both cases a uniform variability on the obtained 
number of recruits can be set by the user. The start loop runs for a number of years that is a 
multiple of the two sex life-spans. This step aims to eliminate the artefacts in the initial 
population due to the use of an equilibrium model in the initialization step. After this phase, the 
simulation loop starts and runs along a period required by the user (step C in fig. 1) generating the 
outputs (step D in fig. 1).  
 
Model components 
Growth 
The growth process is modelled using a VBGF.  

( ))( 01 tageK
age eLL −⋅−

∞ −⋅= . 
For each age (time step Δt = 1 month) length is calculated using the input parameters L∞, K and t0. 
The average length in the time interval (t, t+∆t) is calculated as: 
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The weight at average length, for each age, is calculated from the length-weight relationship in 
the form: b

ageage LaW = ; with a and b as input parameters. 
 
Population 
The population dynamics is formulated following the simultaneous evolution of several cohorts at 
month scale through the exponential population decline model, both in absence (1) and in 
presence (2) of fishing mortality: 

MN
dt
dN

−=     (1) 

ZN
dt
dN

−=     (2) 

 
used respectively in the form (3) and (4): 
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where j indicates the cohort, t the time, Z, M and F the total, natural and fishing mortality 
respectively. (Notice that in any formula where j, age and t are present, it is assumed that age 
represents the age of the cohort j at time t). 
 
Maturity 
Maturity Mat is a function of the length L and is calculated following an ogive model (Quinn and 
Deriso, 1999):  
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where r is the ogive slope and Lm50% is the length at which 50% of fish matures. 
The proportion of mature fish at age is computed as: 
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where the maturity range Lm75%-Lm25%, is related to the ogive slope. 
 
Biomass 
The biomass (Bj) and the spawning stock biomass (SSBj) of the cohort j at time t are respectively 
computed as: 
 

agejtjt wNB ⋅= ,, ; 

ageagejtjt MatwNSSB ⋅⋅= ,,  

 
Analogously, the unexploited biomass (UBj) and the unexploited spawning stock biomass 
(USSBj) of the cohort j at time t are calculated as: 
 

agejtjt wUNUB ⋅= ,, ; 

ageagejtjt MatwUNUSSB ⋅⋅= ,,  

 
Initial recruitment and stock recruitment relationship 
During the step A) (fig. 1) the initial number of individuals in the population are from estimates 
of recruitment independently obtained from e.g. trawl surveys or other sources.  
These numbers randomly selected for each of the e.g. 100 runs (see also the general framework 
paragraph) are used to initialize the population.  
Successively (step B and C in fig. 1), the number of individuals entering in the population can be 
a vector or is estimated from one of the following user selected stock-recruitment relationships:  
 
Beverton & Holt (1957):  

)( bSa
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+
= ; 

 
Ricker (1954):  
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)( bSeSaR −⋅⋅= ; 
 
Shepherd (1982): 

( )[ ]bcSSaR /1/ +⋅= ; 
 
Barrowman & Myers (2000): 
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R and S represent the number of recruits and spawners respectively, whilst a, b, c, *,, Sδα are 
the model’s parameters. Uniformly distributed random variations can be applied by the user to the 
number of offsprings (from vector or stock-recruitment relationship). 
The number of the events (on monthly basis) generating the offsprings is an input of the model. 
The population of spawners generating the recruits is calculated summing up the number of 
individuals of the different age classes of the different cohorts occurring in the population one or 
more (depending on the species biological features) months before the offsprings are produced. 
Thus this quantity is calculated as follows: 

∑=
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; 

where jtSSN ,  represents the number of mature females at time t, of the cohort j: 

agejtjt MatNSSN ⋅= ,, . 
 
Mortality 
The natural mortality can be constant for each age/length, or a vector by age/length calculated 
outside the model and used as input. Alternatively, it is estimated inside the model from the Chen 
and Watanabe equations (1989):  
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Two are the parameters of the Chen and Watanabe model, t0 and K. The asymptotic length (L∞) is 
not necessary, but t0 cannot be equal to 0 (otherwise the parameter tM cannot be defined). The 
quantities a0, a1, a2 and tM cannot be strictly considered as parameters of the model, as they 
depend from t0 and K. The parameter tM represents the age beyond which the contribution of the 
fish of a given cohort can be considered negligible. If parameters are consistent the relationship 
between age and natural mortality shows a “bath tube” shape. 
 
The fishing mortality rate F(L) is modelled for each cohort using the following general equation 
(Sparre and Venema, 1998): 

)()( LSFLF axm ⋅=  

where Fmax is the maximum fishing mortality and )(LS  the proportion of retained fish. 
In Aladym the fishing mortality rate is calculated as follows:  

actaxm fLSFLF ⋅⋅= )()(  
where maximum fishing mortality (Fmax) is calculated as follows: 

minMQZF inputaxm −=  
using the input values of QZ (a Z proxy) and where Mmin represents the minimum value that the M 
vector assumes. As an alternative option, Fmax can be also a user selected input to be set for each 
month. In addition, a fishing activity coefficient (fact) is introduced in order to consider the 
possibility of a fishing ban or changes in fishing effort throughout time. 
The value of QZ by sex can be assumed, as a first order approximation, numerically equal to the 
value of Z observed that is obtained from estimations outside the simulation model (e.g. from 
trawl-survey). A better approximation of QZ is obtained using the tool Aladym-z (see a later 
paragraph). 
In the model the probability of selection )(LS  of the cohort j is calculated at time t from one of 
the two following user selected relationships: 
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where L50%, L75% and L25% are the selectivity parameters and D50%, D25%, D75% the de-selection 
parameters of the model.  
The total mortality Z at time t for the cohort j is thus computed as:  

jtjtjt MFZ ,,, +=  

that is the value acting on the population in the model computations. 
The biomass of individuals of the cohort j at time t death for all causes (BPt,j) is computed as: 
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while the biomass of those death for all causes excluding fishing (BNDt,j) is computed as: 
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Harvest control rules 
The simulation approach can be used as a tool to convert survey biological information and 
relative assessment into quantitative HCRs. The options implemented in the simulation model are 
based on the following aspects: QZ, gear selectivity (size at first capture L50% and selection range) 
and fishing activity (alone or in combination). These three are inputs that can be used to simulate 
different exploitation scenarios. The effects of HCRs (selectivity and fishing activity) are then 
analysed in terms of sustainability for the population in the long-term. For example, the ratio 
between the mean spawning stock biomass and the mean unexploited spawning stock biomass 
(SSB/USSB, output) is also estimated for each harvesting scenario.  
A vector of yield (Y) by time is also simulated, estimating the catch (C) according to the 
following general equation (Gulland, 1969): 
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where tΔ  is the time to which the catch is referred. 
Thus the catch (Yield) in the time interval (t, t+∆t) is computed in Aladym as (Sparre and 
Venema, 1998): 
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SOFTWARE 
Aladym is written in the R language and licensed as open source under GPL2.  
The data and parameters feeding the model can be easily entered using an excel data sheet.  
The results of the simulation are stored into three Export files (.din for inputs, .dou for outputs, 
.RData for the R workspace) and saved in the same directory where R is started using the 
basename of the input sheet.  
To give an idea of the running time, Aladym-r requires about 25 seconds (assuming 40 years of 
start loop and 20 years of simulation) with a Intel (R) Pentium (R) personal computer with a 
processor of 1.70 GHz and 1 GB RAM. 
The tool Aladym-z requires about 2.6 hours (assuming 40 years of start loop and 20 years of 
simulation) with a Intel (R) Pentium (R) personal computer with a processor of 1.70 GHz and 1 
GB RAM. 
The software can be downloaded from the Fisboat web-site, where also a detailed description of 
the input sheet for user help is available. 
 
INPUTS  
Input parameters to the Aladym-r model are:  
• von Bertalanffy growth parameters by sex with associated variability,  
• length-weight relationship parameters by sex; 
• maturity ogive parameters by sex (Lm50% and Lm25%-Lm75% range); 
• natural mortality by sex (a constant value or a vector); 
• seed values (minimum, maximum, ln-mean and ln-standard deviation) of recruitment by sex;  
• proportion of offsprings entering in the stock by month;  
• stock-recruitment relationship parameters or a vector of recruit numbers by month both with 

associated variability; 
• time elapsing from spawning to birth;  
• sex-ratio (female/total) of offsprings; 
• Fmax by month (option 2) or from the model (option 1);  
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• QZ by sex;  
• selection ogive parameters (2 options) of the gear used by the fleet (L50% and L25%-L75% range, 

D50% in case of the selectivity option 2);  
• fishing activity coefficient by month (0, in case of absence of fishing activity). 
 
OUTPUTS  
The outputs automatically produced by the simulations of Aladym-r can be summarised in the 
following items. 
Export data file (.dou): 

1. exploited and unexploited population by sex, per month and age; 
2. exploited and unexploited biomass by sex, per month and age; 
3. exploited and unexploited population of females belonging to the spawning stock per 

month; 
4. total mortality Z calculated by the model for females, males and the whole population 

in each month and year of the simulation as follows (Sinclair, 2001): 
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5. exploited and unexploited biomass per month; 
6. exploited and unexploited spawning stock biomass per month; 
7. ratio between exploited and the unexploited spawning stock biomass per month; 
8. average length and age of exploited and unexploited populations per month; 
9. average length and age of exploited and unexploited spawning populations per month; 
10. yield in tons per month; 
11. average length and age of catches per month; 
12. fishing mortality per month calculated as; 
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where F
jttN ,Δ+  is the number of survivors at the time t+Δt under the hypothesis that 

only fishing mortality is acting; 
13. biomass of natural losses and total biological production per month. 

 
Plots per year of the outputs listed from items 4 to 13 are also produced. 
Some other outputs are also made available to the user: 

1. average length at age and age by sex; 
2. natural mortality at age/length by sex; 
3. weight at age/length by sex; 
4. proportion of mature individuals at age/length by sex. 

These outputs help the user to check the results obtained from the sub-models, in particular those 
related to the VBGF, the length-weight relationship, the natural mortality, and the maturity.  
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PRACTICAL GUIDELINES 
The Aladym core model does not make any fixed or hidden (to the user) assumption about the 
values of the parameters describing the behaviour of the equations on which the model itself is 
built. 
The user is allowed to (and need to) input all the parameters involved: whilst this makes the 
model highly flexible in adapting to different species/environments it loads the user with the 
responsibility to validate each single value and to assess the coherence as a whole. 
Very few checks are foreseen at the moment to supervise the consistency of the data supplied: 
often is a critical analysis of the results which spots such consistency. The checks guarantee the 
positivity of Fmax, of length at t0 and a sex ratio between 0 and 1. 
The model is extensively based on closed form solution to the dynamical equations it solves, thus 
two key options, both related to the early phase, are available for tuning: the ‘Multiplier of Life-
span’ which controls the amount of years that had to be simulated in order to cancel the artefacts 
from the equilibrium model used to initialise the population; the ‘Number of Run for seed 
randomization’ which sets the number of samples to be taken in order to derive the average 
values for the growth and population parameters. For both parameters the rule is: bigger is better, 
however the default values (1, 100) are a reasonable choice. 
One of the parameters highly influencing the behaviour of the model is QZ which, however, does 
not have an immediate counterpart but can be naively associated to the total mortality Z. A 
specific tool (Aladym-z) has been developed which starting from the observed values of Z and the 
description of the life and population traits is able to calculate the values of QZ which better 
approximates the given scenario. 
Starting from the Z_observed, Aladym-z iterates the model modifying, in each run, the amplitudes 
of the QZ waveforms and it stops when the Least Square convergence criteria are met. 
 
Sensitivity 
The extensive number of the simulation run performed evidenced that the model behaviour is 
influenced by the consistency between the set of life-history parameters and population dynamics. 
The model results are thus expected to be particularly sensitive to the stock-recruitment 
relationship and natural mortality.  
 
Strengths/weaknesses 
In Aladym the following points can be considered the strength ones: 
� the model is designed to work in absence of fishery-dependent information; 
� the model is built using separated components that give it enough flexibility to account for 

the use of different equations; 
� the model allows the population dynamics to evolve in a very detailed time scale, thus 

permitting to analyse fluctuations within the year; 
� the detailed time scale allows modelling the effects of the harvest control along the year; 
� the model allows a input natural mortality varying by age/length, thus being able to account 

for species exploited also at early phase. 
 
The following points can be considered as the weak ones: 
� the model does not account for environmental changes, such as those related for example to 

temperature variations, or food availability; 
� the life-history traits that are used for modelling the population dynamics (e.g. growth, 

natural mortality, maturity) are assumed stable along the time and no density dependent, 
only the direct effects of fishery on the population are considered;  

� the model does not include spatial behaviour components; 
� harvesting scenarios based on the control of the total catches are not foreseen; 
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� the user should be aware of the range of validity of the sub-model parameters such as those 
related to the stock-recruitment relationships. 
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Fig. 1 – Scheme of the Aladym-r tool. R=recruitment; w=individual weight; Sel=selectivity; 
Mat=maturity; M=natural mortality; F=fishing mortality, Z=total mortality; N=exploited 
population, UN=unexploited population, B=exploited biomass, SSB=exploited spawning stock 
biomass, UB=unexploited biomass, USSB=unexploited spawning stock biomass, S-R=stock-
recruitment relationship, Y=yield, t=time, j=cohort. 
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The stochastic dynamic tool Aladym-q 
 
 
 
USING ALADYM FOR ESTIMATING MODEL-BASED INDICATORS AND 
SEEKING REFERENCE POINTS BY SIMULATION 
 
Lembo G., A. Abella, F. Fiorentino, S. Martino, and M.T. Spedicato (SIBM) 
 
INTRODUCTION 
Aladym-q adds to the same mathematical model of Aladym-r the capability to deal with the 
stochastic representation of some input parameters, in order to evaluate the corresponding 
distribution functions of the output variables using a MonteCarlo approach. This feature aims to 
build a procedure to help identifying indicators and/or reference points associating them a 
confidence interval. 
 
DERIVATION  
The stochastic dynamic tool Aladym-q 
The stochastic dynamic model defined as Aladym-q follows the same basic formulations as 
Aladym-r. The main difference consists in modelling the uncertainty of estimates related to the 
initial recruitment, growth and maturity traits of the population through stochastic processes.  
Moreover, a uniform distribution is applied to the number of recruits generated by the stock-
recruitment relationship. In addition, probability distribution functions (pdf) selected by the user 
are applied to the growth parameters K and L∞, and to the maturity parameters. This makes 
Aladym-q more adaptable for estimating the probability associated to metrics, indicators and 
reference points. An operational framework of the Aladym-q is in fig. 2.  
The step AA) regards the input and initialization. Given the parameters of the identified pdfs a 
first random realization is made in this step. Then the population evolves in the steps BB) and 
CC). These steps are reiterated for a number of realizations, sampling at each run a new set of 
parameters from the pdfs. In the output step pdfs and cumulative pdfs are generated, the latter 
calculated according the following general formulation: 

( ) χχ dpdfxXPXf
x

∫
∞−

=<= )()(  

 
SOFTWARE 
Aladym is written in the R language and licensed as open source under GPL2. The data and 
parameters feeding the model can be easily entered using the same excel data input sheet as 
Aladym-r. The differences regard the number of realizations to be performed (user selected and 
mandatory for Aladym-q) and the parameters of the pdfs associated to growth and maturity, that 
for Aladym-q operate also in the simulation loop.  
The results of the simulation are stored into three Export files (.din for inputs, .dou for outputs, 
.RData for the R workspace) and saved in the same directory where R is started using the 
basename of the input sheet.  
To give an idea of the running time, using a Intel (R) Pentium (R) personal computer with a 
processor of 1.70 GHz and 1 GB RAM, Aladym-q might requires 572 seconds for 100 
realizations, ∼1.5 hours for 1000 realizations and about 17 hours for 10000 realizations (assuming 
40 years of start loop and 20 years of simulation).  
The software can be downloaded from the Fisboat web-site, where also a detailed description of 
the input sheet for user help is available. 
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INPUTS  
As regards the inputs, besides those already mentioned for Aladym-r, Aladym-q requires: 

• the number of realizations;  
• the parameters of the pdfs. 

 
OUTPUTS 
The outputs automatically produced by the simulations of Aladym-q can be summarised in the 
following items. 
Export data file (the quantities are related to each realization): 

1. exploited and unexploited biomass in tons per month; 
2. exploited and unexploited biomass of spawners in tons per month; 
3. ratio between exploited and unexploited spawning stock biomass per month; 
4. Z calculated by the model combined for sex per month and by sex for year; 
5. annual Z calculated by the model per sex; 
6. QZ (the input value) by sex; 
7. average length and age of exploited and unexploited populations per month; 
8. average length and age of exploited and unexploited spawner populations per month; 
9. F per month; 
10. yield in tons per month; 
11. average length and age of the catches per month; 
12. biomass of natural losses and total biological production in tons per month; 

 
Plots of the pdfs and the cumulative (cpdfs) are interactively produced per year for the same items 
listed above. 
Some other outputs are also made available to the user: 

1. average number of recruits at each realization;  
2. growth and maturity parameters by sex at each realization. 

These outputs help the user to check the results from the sub-models related to the VBGF, the 
maturity, and the recruitment. In addition, they also allow to track at each realization the outputs 
with the related key-inputs.  
 
 
PRACTICAL GUIDELINES 

Same considerations as developed for Aladym-r hold for Aladym-q.  
A new parameter is introduced for tuning the quality of the output pdfs: the number of 

realizations. This parameter should be set accounting for a trade-off between the running time and 
target confidence level. Experiments showed that values in the range from 1000 to 10000 give an 
error level varying from about 6-7 to ∼1%. These confidence levels are well below the precision 
by which most of the input parameters are known. 

As regards sensitivity and strengths/weaknesses of the models, similar consideration as 
developed for Aladym-r can be applied to Aladym-q, although the latter tool has the advantage of 
including stochastic effects in some of the key life-history traits. This stochasticity masks the 
effects due to uncertainty on the knowledge of input data and of their relationships. 
 
 
REFERENCES 
See previous chapter: Simulating population dynamics. Aladym model. 
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Fig. 2 – Scheme of the Aladym-q tool. pdf=probability distribution function; K, L∞ growth 
parameters, R=recruitment; w=individual weight; Sel=selectivity; Mat=maturity; M=natural 
mortality; F=fishing mortality, Z=total mortality; N=exploited population, UN=unexploited 
population, B=exploited biomass, SSB=exploited spawning stock biomass, UB=unexploited 
biomass, USSB=unexploited spawning stock biomass, S-R=stock-recruitment relationship; 

lengthaverage=L ; ageaverage=ega ; SS=exploited spawner’s population; USS=unexploited 
spawner’s population; C=capture in numbers; Y=yield, t=time, j=cohort.  
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The input sreadsheet for Aladym tools 
 
 
ALADYM (V. 08) EXCEL INPUT SPREADSHEET DESCRIPTION 
 
Lembo G., A. Abella, F. Fiorentino, S. Martino and M.T. Spedicato (SIBM) 
 
1. TECHNICAL ASPECTS 
Aladym is written in the R language and licensed as open source under GPL2.  
The parameterization of the model can be easily done using an excel spreadsheet for data input; 
this sheet is the same for the three tools:  

D) the quasi-deterministic dynamic tool named Aladym-r; 
E) the tuning tool Aladym-z;  
F) the stochastic dynamic tool named Aladym-q.  

 
2. CONVENTIONS 
The cells are colour coded:  
� Grey shaded cells: contains fixed value that at this time can not be modified. They are 

reserved for future use;  
� Red cells: data are calculated according to other value present in the sheet. They are 

shown as help in inputting the model parameters;  
� Green bold cells: contains the inputs and parameters of the model. 

Do not move or eliminate or add cells, rows and columns. 
No default value is provided for any of the parameter the model uses, so it is mandatory to fill the 
proper cells, on the basis of the user choices. 
The species name and geographical area are for documentation only. 
 
 
3. DESCRIPTION OF INPUTS 
 
3.1 Control parameters 
 
Cell E9 (fig. 1): to input the years to be simulated. 
Cell F9 (fig. 1). The start loop of the model runs for a number of years that is given by the 
product of cells G9=F9×J17×J28 (see fig. 1 and 2). It is a multiplier of life-span of the two sexes 
and it should be chosen in order to have G9 an integral multiple of both the sex life span 
(G9 ∝ m.c.m. (J17, J28)). 
Cell H9 (fig. 1). Contains the number of runs needed to stochastically initialise the population. 
Recommended value is 100 for Aladym-r and Aladym-z, while it should be set to 1 for Aladym-q: 
the software automatically does it. 
Cell I9 (fig. 1). It is used only in Aladym-q and it should be set according to the desired error 
level (see document on Methods). Typical values ranges between 1000 and 10000. 
 

7

8
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D E F G H I

12 40 0.25 70 100 1000
e.g. months/year if 12

Time slice per 
year

Years to be 
simulated
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Years to be pre-
simulated

Number of Run 
for seed 

randomization

Number of Run for 
Histogram creation

 
Fig. 1 
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3.2 Von Bertalanffy growth parameters by sex with associated variability 
It is possible to use different growth parameters for males and females. The same is for life span, 
length-weight relationships and maturity parameters.  
Cell H17-I17 (fig. 2a), cell H28-I28.Regarding the growth parameter t0 the minimum and 
maximum values should be set, and the mean is calculated (Fig. 2a). The stochasticity of the 
parameter t0 is uniform between these two values.  
The variations of the parameter t0 are used only in the initialization run.  
It is important that the parameter t0 is less than 0 in case the option of the natural mortality 
estimated inside the model by Chen and Watanabe equation is used (see below the natural 
mortality paragraph, option 2). 

15
16
17

G H I J

Mean Min Max
-0.1000 -0.11 -0.09 14

to [years]
Lifespan [years]

 
Fig. 2a 
 
Cell Q14-U14, Q16-U16, Q18-U18, Q20-U20 (fig. 2b). The stochastic pattern of the growth 
parameters L∞, and K (fig. 2b) can be chosen according to one of the options in fig. 2c. It is used 
in the initialization run of Aladym and in the several realizations of Aladym-q. 
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Parameter Distribution Min Max A B
Parameters for the random runs
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R [none] 1 37,281,381 129,516,993 18.06 0.88

0.260 0.0260
Male Growth
K [years-1]

3 0.234 0.286

0.132 0.162 0.147 0.0147

Male Growth 
Linfinity [mm]

3 527.40 644.60 586.00 58.60

Female Growth
K [years-1] 3

Female Growth
Linfinity [mm] 3 795.60 972.40 884.00 88.40

Male Maturity Ogive
L50% [mm] 4 287.30 318.40 0.00 0.00

Male Maturity Ogive
L75%L25% [mm] 4 39.30 43.50 0.00 0.00

Female Maturity Ogive
L50% [mm]

4 324.90 360.00 0.00 0.00

0.00
Female Maturity Ogive

L75%L25% [mm] 0.004 37.90 41.90
 

Fig. 2b 
 

31
32
33
34
35
36

P Q R S

Distribution A B
1 Lognormal Mean ln(x) Ds ln(x)
2 Gamma Shape Scale
3 Normal Mean (x) Ds (x)
4 Uniform None None

Legend

 
Fig. 2c 
 
3.3 Length-weight relationship parameters by sex 
Cells A22-B22, A33-B33. The parameters should be determined using measure of weight in 
grams and length in mm. 
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3.4 Maturity ogive parameters by sex  
Q22-U22, Q24-U24, Q26-U26, Q28-U28 (fig. 2b). The length at first maturity Lm50% and the 
range Lm75%-Lm25% are mandatory for females, as the current release do not use those parameters 
for males.  
The stochastic pattern of Lm50% and Lm75%-Lm25%  can be chosen according to one of the options in 
fig. 2c. It is used in the initialization run of Aladym and in the several realizations of Aladym-q. 
 
3.5 Natural mortality  
Cells G22-H22 (fig. 3), G33-H33. There are three options:  

1. a constant value of natural mortality for all the ages/length (option 1, fig. a) by sex, that 
has to be inputted by the user in the cell G22 and G33;  

2. a vector of natural mortality by age/length and sex that is calculated inside the model 
according to the Chen & Watanabe (1989) equation (option 2, fig. 3); 

3. a vector of natural mortality by age and sex provided by the user (option 3, fig. 3a, and 
fig. 3b). In this case the number of steps of the vector are computed (cells N9 and N10, fig. 
3b). Each row of the column M and N of fig. 4 must be filled. The numbers in the N9 and 
N10 cells indicate how many steps must be filled in order to be coherent with the species 
life-span.  
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Fig. 3a 
 

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

L M N

Male 61
Female 97

Male Female
[years-1] [years-1]

1
2
3
4
5
6
7
8
9

Mortality Vector 
Length

Mortality

 
Fig. 3b 
 
3.6 Values (minimum, maximum, mean and standard deviation) of offspring  
Cells Q12-U12 (fig. 2b). These values are used in the initialization run of Aladym to generate 
unbiased populations by sex. The stochastic pattern can be chosen according to one of the options 
in fig. 2c. Aladym-q will use the variability set by the user in the columns F and G of figure 5 (see 
next paragraph).  
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The model assumes a coincidence between recruits and offspring, thus the number of individuals 
should be referred to the 0 age group. In addition, a guess estimate of absolute recruitment is 
necessary.  
 
3.7 Stock-recruitment relationship 
Cells A38-D38 (fig. 4). Six options are foreseen to model the number of offspring entering in the 
simulation in each time step: 

• Beverton & Holt model, option 1 
• Ricker model, option 2 
• Shepherd model, option 3 
• from input vector, option 4 
• from hockey-stick, option 5  
• from quadratic hockey-stick, option 6 

and the input choice is set in the cell D38. The parameters of the relationships are in the columns 
A, B, and C (row 38, fig. 4) and should be chosen considering the number of spawners expected 
in the population in each month. 
 

36
37
38
39

A B C D E F G H I

a (or ≅) b (or S*) c (or≅Κ) 1 4 From Vector
4 2 5 Hockey-Stick

3 6 Hockey-Stick quadratic

Stock-Recruitment Relationship Parameters Recruitment  
Type

Legend (Recruitment  Type)
R=S/(a+b*S)
R=a*S*exp(-b*S)
R=a*S/(1+(S/c)^b)  

Fig. 4 
 
In case the option 4 is selected, the number of offspring by month is entered in the column H of 
the fig. 5. The whole number of recruits should be inputted, because it is thereafter split by sex 
from the sex ratio value set in the column I (Fig. 5). 
 

63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78

A B C D E F G H I J
Time slice Parameters (total rows) = 480 + seed run

Offspring Sex Ratio Fishing

Male Female -% +% Female/Total Coefficient

[years-1] [years-1] none none none none none
seed run 0.8 0.8 83.00 83.00 70613757 0.43 1.00
1 month 0.8 0.8 83.00 83.00 0.00 0.43 1.00
2 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
3 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
4 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
5 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
6 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
7 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
8 month 0.8 0.8 83.00 83.00 70613757 0.43 1.00
9 month 0.8 0.8 83.00 83.00 0 0.43 1.00

10 month 0.8 0.8 83.00 83.00 0 0.43 1.00

Parameter

QZ Offspring Variability

 
Fig. 5 
 
The variability on the number of offspring generated by the stock-recruitment relationships (or 
from a vector) is set according to a uniform distribution. The range (±%) is given by the user in 
the columns F and G (fig. 5). 
 
3.8 Proportion of offspring entering in the stock by month  
Cells B58-G58, B60-60 (fig. 6). This input is used for splitting the total number of offspring 
generated by the stock-recruitment relationship, or inputted in the column H, according to several 
monthly recruitment pulses.  
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56
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59
60
61

A B C D E F G

January February March April May June

0.00 0.00 0.00 0.00 0.10 0.40
July August September October November December
0.35 0.10 0.05 0.00 0.00 0.00

Proportion of offsprings/month

Total

1.00

 
Fig. 6 
 
 
 
3.9 Delay for SS calculation 
Cell I60 (fig. 7). This input is used to model the time elapsing from the spawning event to the 
time offspring reach the length estimated from the VBGF for age 0. Typical value is 1. 
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60

I

[month]
1

Delay for SS calculation

 
Fig. 7 
 
3.10 Sex-ratio  
Column I68- (fig. 5). These values are the ratio of female offspring/total offspring. They are used 
to split the number of offspring generated by the stock-recruitment relationship (or from vector) 
in males and females population. 
 
3.11 QZ (Z proxy) and Z-observed 
Column B68-, C68- (fig. 5). These inputs are used for predicting the evolution of a given 
population.  
The value of QZ can be assumed, as a first order approximation, numerically equal to the value of 
Z observed that is obtained from estimations outside the simulation model (e.g. from trawl-
survey). Z estimates are commonly expressed on a year basis, thus if monthly estimates are not 
available, the same value can be set for 12 months. The possibility of different values by sex is 
foreseen. In the row 68 of fig. 5, the values (in B68 and C68) are referred to the seed run. 
The value of QZ can be changed to simulate different exploitation scenarios and the consequences 
on the population and yields of different HCRs. 
The input of QZ is mandatory for Aladym-r and Aladym-q. 
Column W68-, X68- (fig. 8). A better approximation of QZ is obtained using the tool Aladym-z. 
To do this Z-observed (estimates from trawl survey or other source) must be also inputted. The 
two values (Qz and Z-observed) can be also the same. The input of Z-observed and QZ are both 
mandatory for Aladym-z. The annual QZ output of Aladym-z can be then used as input in QZ of 
Aladym-r and Aladym-q. If all the parameters and inputs of the model are consistent the 
differences between QZ and Z-observed should be small. 
 
The operational suggestion is: 1) run first Aladym-r, 2) look and evaluate the results, 3) tune 
better the parameters of the model if necessary, 4) refine QZ with Aladym-z, 5) run again Aladym-
r and then, for getting a confidence interval of your model-based indicators and reference points, 
run Aladym-q.  
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Fig. 8 
 
An alternative option consists in the input, besides QZ, of Fmax if estimates of this parameter are 
available. In this case the user should choose the option ‘from the vector’ (column F in Fig. 9a) 
and input the value 2 in A41, then monthly values must be inputted in column Y of figure 9b. 
 

41
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Select Fmax 1 1 = from the model 2 = from the vector  
Fig. 9a 
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Fig. 9b 
 
3.13 Selection ogive parameters of the gear used by the fleet  
Column P68-, V68- (fig. 10a). These values are used to shape the fishing mortality accounting 
for gear selectivity. These parameters are referred to the gear used by the commercial gear. The 
L50% and the range L75%-L25% are both necessary. Two options are available (fig. 10a), that model 
the selection process according to an ogive (option 1) or an ogive with a deselection process 
(option 2). In this case it is mandatory to input also the deselection size D50% (column S in fig. 
10b), as the other parameters L75%, D75% and DSR are automatically calculated. 
The values of selection parameters can be also changed to simulate different exploitation 
scenarios and the consequences on the population and yields of different HCRs. 
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S(L)= 1 / (1 + exp((log(9) / (L75p - L25p) * (L50p - L))) 
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Parameter L50%
Selection range
(L75%-L25%)

D50% L75% D75% DSR

[mm] [mm] [mm] [mm] [mm] [mm]
seed run 80.00 20 550 90 540 20
1 month 80.00 20 550 90 540 20
2 month 80.00 20 550 90 540 20
3 month 80.00 20 550 90 540 20
4 month 80.00 20 550 90 540 20
5 month 80.00 20 550 90 540 20
6 month 80.00 20 550 90 540 20
7 month 80.00 20 550 90 540 20
8 month 80.00 20 550 90 540 20
9 month 80.00 20 550 90 540 20

10 month 80.00 20 550 90 540 20
11 month 80.00 20 550 90 540 20
12 month 80.00 20 550 90 540 20  

Fig. 10b 
 
 
3.14 Fishing coefficient  
Column J68- (fig. 5). This coefficient can be set at 0 in case of fishing ban simulation or in a 
range between 0 and 1 if changes in fishing effort would be simulated (1=no changes in the 
exploitation scenarios).  
It can be also higher than 1, provided that the average along each year is 1. 
The fishing coefficient can be also used for simulating modifications in the fishing mortality not 
due to the selection pattern.  
 
3.15 Parameters of the pdfs for Aladym-q 
 
Column P12-U28 (fig. 2b). Four different pdf distributions are foreseen: the normal, log-normal, 
gamma and uniform (see the legend in fig. 2c). The user should select the more appropriate for a 
given variable. The variables to be selected are listed in the column P of fig. 2b, in column Q 
there is the index of the chosen pdf and in the other columns the parameters needed to identify 
numerically the distribution. 
 
 
4. Procedures  
Each tool should be run from its own directory in order to allow the automatic preload of its 
history file, the Excel input sheet must be in a directory on a read/write filesystem (see example 
DataInputs.xls) as the output file will be written in the same directory. 
 
The instruction to run the simulation is the same for all three tools: 
 
source(“src/main.r”) 
 
A windows should pop-up to allow the selection of the Excel file containing the input data.  
The simulation begins and some information on the step that the tool is executing is displayed. 
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The results are automatically saved into three files which have the same basename of the Excel 
file and extension din (to store the input data in text format), dou (to store the results of the 
simulation in text format) and RData (to store the R workspace for further processing, binary). 
 
The tool Aladym-r display also automatically the plots of the main variables calculated (averaged 
on a yearly timescale). 
 
The tool Aladym-q, due to the large quantity of produced results offers an interactive session 
where the user selects the plot of interest; the session is started entering in the console: 
 
PlotInt() 
 
24 variables are listed, then the user should choose the number associated to the variable and 
successively the year of the simulation (1, 2…20). The graphs of the probability distributions and 
of the cumulative pdf related to the variable and to the year will be produced. 
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Introduction 
Aladym (Age-Length Based Dynamic Model) simulation model, belonging to the group of dynamic pool models 
(Thompson & Bell, 1934), has been designed to predict, through simulations, the effects of changes of biological (e.g. 
size at first maturity, growth, recruitment), pressure (e.g. total mortality) and management (e.g. size at first capture, 
fishing activity) parameters on single fish population dynamics. The model uses the classical equations of the fish 
population dynamics. This is planned to evolve at a very detailed time scale (1 month), using vectors by age and size 
and accounting for differences by sex in growth, maturity and mortality. Also the natural mortality can be modulated as 
a vector by age-length. This is an important issue for Mediterranean fisheries, where fish populations are exploited 
starting at an early stage in the fish life (e.g. Caddy, 2006a). Removals are simulated on the basis of the total mortality 
rate modulated using a harvesting pattern and a fishing activity coefficient. The very detailed time scale implemented in 
the model allows to envisage management action considering biological process such as recruitment and growth in time, 
that means both along the year and during a transition phase from a ‘current’ to a new state.  
Aladym contains also an harvest control rule thought to be particularly useful in specific situations, when fish are 
exploited at early stages, management is mainly based on a frame of technical regulations and a TAC regime cannot be 
implemented for most demersal fisheries (‘passive management’, according to the definition of Caddy, 2006b). 
Thus the foreseen management options are based on gear selectivity and fishing activity that can act alone or in 
combination. The latter can be for example very useful to predict the effect on the population of a fishing ban or of 
changes in fishing effort along the year and throughout the whole time of simulation. Though based on non-TAC 
management context, the model can however give indications for TAC-management situations, when the effects of 
alternative measures would be explored.  
Aladym works with fishery-independent information, although its predictive capability of real catch levels can be 
verified using data on commercial catches or fishing activity per month. This characteristic has the advantage of making 
the model useful also where good quality catch data are difficult to achieve for different reasons, including the problems 
in sampling extreme dispersed and diversified fishing sites and fleets. 
Metrics characterising fish population attributes (here termed indicators) were simulated from the Aladym model, 
resulting in the construction of model-based time series of a variety of indicators of stock attributes. The effects of 
different management strategies were then analysed in terms of the sustainability of the population in the long-term, 
using indicators as the ratio between the mean exploited spawning stock biomass and the mean unexploited spawning 
stock biomass (ESSB/USSB). Also other candidate indicators as the ratio of ESSB vs EB (exploited biomass) and vs 
yield have been tested. 
The project case studies scanned four different stocks across European waters in the demersal domains with different 
vital traits, stock histories and survey methodologies. The case studies were: red mullet in the central-southern 
Tyrrhenian sea, hake in the Bay of Biscay and in the Aegean sea, and cod in the Baltic sea. 
The age-length based Aladym model has been thus used to test, through simulations, the consequences of changes of 
pressure parameters (mortality) and management strategy (e.g. fishing activity, size at first capture) on the fish 
population dynamics of the target stocks.  
These effects have been estimated along 20 or 40-years simulations, depending on the species, analysing the changes of 
model-based population indicators, i.e. the total biomass, the spawning stock biomass, the biological production (all 
deaths removed from the population for natural and fishing causes). Consequences on model-derived vital traits 
indicators (i.e. average length of the population and of the spawning population) have been also evaluated, as well as 
changes regarding simulated yield and mean length of the catches. The analysis of population indicators (Petitgas et al., 
2007) had showed for some of the considered species that Z increased during the last years of the observation period 
whereas old ages exhibited a decreasing abundance. Hence the importance of simulating scenarios for Z to assess the 
viability range of the population according to exploitation pressure. The aim of this study was consequently also to get 
reference values for Z and model-based indicators for a sustainable exploitation (i.e., durable and little variable in time). 
Finally, effects of exploitation strategies on a sustainability indicator as the ratio between exploited and unexploited 
spawning stock biomass (ESSB/USSB) were assessed.  
Details on the Aladym model (documentation and code) and application to case studies can be found in another section 
of this report as well as on the Fisboat website.  
 
Materials and methods 
Red mullet (Mullus barbatus) in the central-southern Tyrrhenian Sea 
Aladym model was applied to the red mullet case study following three complementary objectives that can be 
summarised as follows: 1) analysing the effects of the observed fishing pressure levels (yearly total mortality rates, 
1994-2002) on the population; 2) investigating the influence of recruitment mode, i.e. dependent or independent from 
the parental stock (random recruitment and a stock-recruitment relationship were used); 3) evaluating the reaction of the 
population to different fishing pressure scenarios, based on changes of total mortality Z.  
All these effects were explored using pairwise relationships of the output simulated metrics, selecting those suitable as 
reference points. 
The inputs of the model, fully detailed in the case-study report, were mostly obtained from trawl-surveys (WP2a&b of 
Fisboat project; national trawl-surveys: Spedicato et al., 2003, 2004, 2006), except for the size at first capture (L50) and 
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selection range (SR) that were from selectivity experiments conducted in the area using a commercial trawl net (Lembo 
et al., 2002). Considering the early stage of exploitation of red mullet in the area and following an Aladym option, 
natural mortality variable by length/age was set according to the Chen and Watanabe model, while a guess estimate of 
longevity was obtained using the Taylor approximation. All the simulations were run for 20 years. 
 
Hake (Merluccius merluccius) in the Bay of Biscay 
Aladym model was applied to the hake in the Bay of Biscay to investigate the effects of different fishing pressure on the 
population and explore pairwise relationships of the output simulated metrics. The study period (1987-2004) was 
always simulated using a constant total mortality set at ~1.04 for the first 14 years and at a higher value (~1.8) from 
years 15 (2001) to 18 (2004). In the simulated scenario ‘Z high’, the total mortality remained at this high value (~1.8) 
during the following 22 years, while in the scenario “Z mean” the total mortality was set to ~1.04, i.e., the mortality 
value observed during the first part of the study period for the whole simulated period. Finally in the “Z low” scenario, 
the mortality value was fixed at the three quarters of the mortality used in “Z mean” scenario, i.e. 0.78 from the year 19 
onwards. 
The inputs of the model, fully detailed in the case-study report, were mostly obtained from trawl-surveys and from 
literature as regards some biological parameters (ICES, 1991; Jensen, 1996; de Pontual et al., 2006; Murua and Motos, 
2006; Murua et al., 2006). Recruitment was assumed independent from the parental stock. All the simulations were run 
for 40 years. 
 
Hake (Merluccius merluccius) in the Aegean sea 
Population modelling was based on the total mortality indices estimated within WP2A of the Fisboat project in the 
study period (years: 1-9, corresponding to the available time series). The value of the last year (year 9; Z∼0.9) was then 
projected forward for 11 years (years: 10-20), while for the final 20 years (years: 21-40) a lower value of total mortality 
was introduced (∼0.78), to simulate long-term effects of a pressure reduction. This was combined with a decreasing of 
fishing mortality as obtained by modulating two factors: 1) the size at first capture that was increased (L50=108 mm) 
from year 8 onward as a result of a new cod-end mesh opening (40 mm) and 2) the fishing ban of trawlers in June-
September. In the harvesting pattern also a de-selection length was considered accounting for vulnerability/accessibility 
of the fish to the gear. This was based on the knowledge about the fishing grounds targeted by differently equipped 
fishing units, accounting for the distribution of adult hakes in the area, which inhabit the deeper waters (Anon., 2006). 
The inputs of the model, fully detailed in the case-study report, were mostly obtained from trawl-surveys and from 
literature as regards some biological (Papaconstantinou & Stergiou, 1995; Papaconstantinou et al., 1998; Karlou-Riga & 
Vrantzas, 2001; Anonymous, 2002) and technical (Abella and Serena, 1998; Fiorentino et al., 1998; Petrakis et al., 
2004) parameters. All the simulations were run for 40 years and output simulated metrics were analysed through 
pairwise relationships between pressure and population indicators. 
 
Cod (Gadus morhua) in the Baltic sea 
The Aladym simulation model was used to predict the effects of various fishing pressure scenarios. Input values 
(growth parameters, stock-recruitment relationship etc.) to the model were obtained from scientific surveys. Options 
implemented in the model were as follows: gear selectivity (from commercial fleet -unchanged in the simulation), 
fishing activity (changed according to fishing scenario considered – total fishing ban, periodical fishing ban etc.). 
Recruitment variability was assumed as +/-20% (on the basis of observed recruitment variations) and total mortality Z 
(first order approximation equal to the value of Z observed as obtained from research surveys - the outcome from WP2).  
In each HCRs scenario considered the sustainability of the Baltic cod (eastern stock) population in the long-term 
context was analyzed. Among the simulations performed the results of a few selected ones were retained for the 
objectives of the present study. 
 
Results 
Red mullet (Mullus barbatus) in the central-southern Tyrrhenian Sea 
The relationships of fishing pressure parameters (Z and F) vs. population (biomass and spawning biomass of the 
exploited and unexploited population, related mean lengths and ages) and removal metrics (yield, biological production, 
mean length/age of catches) showed significant pairwise negative correlation (range: minimum -0.57, maximum -0.94), 
generally with a 2-years delay. This might be explained considering a cascade effects along cohorts combined with the 
growth rate of the species, that requires a time lag to be evidenced.  
The impact of a high rate of total mortality is well evidenced in the evolution of the selected indicator, i.e ESSB vs 
USSB that falls down at very low values almost every 5-6 years, when the additive effects of harvesting along cohorts 
(peaks of Z) were combined with the characteristic of the life cycle, although the contribute of the latter is rather low 
(about 5% as computed for the unexploited population) compared to the former. 
In addition, also the indicator ESSB vs EB was considered, given the advantage to be more easy to understand (which 
proportion should the biomass of spawners represent for a sustainable exploitation?) and the very high level of positive 
correlation (range: 0.91-0.99) with population metrics. The two indicators ESSB vs USSB and ESSB vs EB were 
retained for evaluating the effects of a Ricker stock-recruitment relationship on the population dynamics in comparison 
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with a recruitment pattern independent from the parental stock. The results highlighted that the ratio ESSB/USSB, 
under the hypothesis of independent recruitment, was about 50% of the ESSB/USSB (about 34% in case of stock-
recruitment relationship with higher density-dependent effect), whilst the ESSB/EB ratio was about 130%.  
Assuming a current average rate of total mortality of 2.4 and a stock-recruitment relationship characterised by a higher 
density-dependent effect, that is plausible according to the knowledge on the species (Levi et al., 2003), we tried to 
evaluate the effects of changing pressure, from -25% to +25% of the current value, using Aladym-q. Overall results 
highlight an alert in the current situation and the positive effect of reducing pressure on the population: the probability 
the ESSB vs USSB ratio would reach levels lower than 0.16, 0.22 and 0.3 is 0.05 at Z values corresponding to 2.8, 2.4 
and 2.1. 
 
Hake (Merluccius merluccius) in the Bay of Biscay 
Among the indicator generated from the Aladym model three candidates: ESSB vs USSB, ESSB vs EB, and ESSB vs 
yield were selected as descriptor of the population response to different fishing pressure. The second and third ratios are 
probably more informative, as the adult part of the exploited population was compared to total biomass available or 
yield. The first ratio is more sensitive to changes in recruitment while the second one allows to illustrate the effect of 
the fishing pressure, making easier the proposition of a management action that would warrant a more stable catch 
level. These indicators are thus retained to evaluate the effects of the simulated Z scenarios. 
The scenario “Z high” describes changes occurring in hake population if the fishing pressure remains at the level 
observed during the four last years (2001-2004) of the study period. All indicators exhibited long term decreasing trend 
although some improvement can be seen some years as a consequence of very good recruitment. Effects of good 
recruitment were of short duration. All the population production indicators (e.g. yield, biological production, exploited 
spawning stock biomass, length …) and the ratios ESSB vs EB (mean 0.25) or ESSB vs USSB (mean 0.02) were on 
average the lowest simulated and lower than ones of 1987-2004 period. The relationships of fishing pressure parameters 
(Z and F) vs. population (biomass and spawning biomass of the exploited and unexploited population, and related mean 
lengths) and removal metrics (yield, biological production, mean length of catches) were analysed for this scenario, that 
presented a more contrasted situation in term of mortality. Significant pairwise negative correlation were found (range: 
minimum -0.41, maximum -0.86), with 2-years delay for biomass and removal metrics vs Z and F and 3-years delay for 
vital trait indicators vs Z and F. 
In the scenario “Z mean” the fishing pressure was maintained to the mean level prevailing during the first 14 years of 
the study period. This scenario can be considered as the continuation of the exploitation on the same conditions as 
during the period of study (ESSB vs EB mean 0.36; ESSB vs USSB mean 0.09). The catch levels observed and 
obtained by simulation were close. The last scenario, “Z low”, allowed to increase on average all the population 
production indicators and the ratios ESSB vs EB and ESSB vs USSB that reached mean values of 0.41 and 0.17, 
respectively. The lowest catch was predicted the first year of the simulated period afterwards catches would be higher 
and less variable than in any other scenarios. Indeed the ratio ESSB vs yield reached an average the value of 1.04 that 
was almost twofold the value in the “mean” scenario (0.6) and 5 times the level of the “high” scenario (0.22). 
 
Hake (Merluccius merluccius) in the Aegean sea 
All the relationships regarding Z and population or removal metrics or vital traits had a delay of 3 years, while those 
regarding F had a delay of 2 years. This might be explained considering a cascade effects along cohorts combined with 
the growth rate of the species, that requires a time lag to be evidenced. Length-based indicators and population metrics 
resulted well correlated, except the length mean of the exploited spawning stock versus Z and F and the yield versus Z 
and F. All the relationships showed negative slopes, as expected. The beneficial results following the decreasing of the 
total mortality from years 20 onwards becomes evident after the year 20 with a continuous rising phase, due to the 
cumulative effects along cohorts. At this stage a new and more safe state seems to be reached, as evidenced by the 
indicator ESSB vs USSB ratio. This assumed values of about 0.07 at initial time and was gradually growing to 0.17 
when the mortality was reduced. A similar pattern showed the ratio ESSB vs EB, which values were at level of about 
0.4 at beginning and progressively increasing to 0.5, as a result of the beneficial effect on the population of a mortality 
diminution. More probable values of the ratio ESSB vs USSB, as estimated from Aladym-q, were in the range 0.07-
0.12, both at the years 7 and 20, while at year 40 the more probable values were between 0.12 and 0.18. 
 
Cod (Gadus morhua) in the Baltic sea 
Model-based indicators obtained from the exploitation scenario corresponding to the status quo fishery showed low 
spawning stock biomass (SSB ∼61-64 000 t), as compared to reference points (Blim=160 000 t, Bpa=240 000 t), which is 
at present the case of Baltic cod. Therefore in further simulations options with fishing decrease were studied. Thus two 
months fishing ban for each year during spawning season (July-August) were applied to the status quo scenario. It 
resulted in a very slight increase of length indicators and SSB (∼80 000 t) that however did not reach the Blim level. 
Since ICES for several years has recommended total ban on Baltic cod, in another simulation 2 years total ban was set 
and after that fishing was continued with the intensity as in status quo scenario. The results revealed an increase in 
length indicators, but after 5 years metrics returned to their initial values. SSB exceeded Blim in year 2 and 3 (∼180 000 
t) of the simulation but then returned to the value of 80 000 t. Simulation with two years ban and next applying fishing 
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mortality (F) reduced to 0.3 (as recommended by EU in multiannual plan for Baltic cod) gave much better results, since 
indicator values increased and remained on the same level in consecutive years. In addition, that exploitation allowed 
for SSB to rebuild and maintain Bpa target. However, exploitation strategy that assumes total ban on fishing might be 
hardly accepted by fishermen. Therefore, another strategy assuming gradual reduction of F by 10% each year until 
recommended F=0.3 was examined. Aladym simulation showed that stepwise F reduction would allow in 10 years 
perspective to obtain SSB equal to Bpa. Positive effect of gradual F decrease as compared to strategy implementing 2 
years ban was higher average yield (by 5% in 20 years simulation), which would be welcomed by fishermen.  
In addition, the Aladym series of simulations showed that the most adequate value of Z for the Baltic cod recovery 
should be equal to 0.5. Also it seems that Z=0.5 should assure safe stock exploitation in the future and therefore Z=0.5 
could be considered as a reference value.  
 
Discussion 
The relationships of fishing pressure parameters vs. population and removal indicators showed significant pairwise 
negative correlation for the examined stocks, generally with 2-3 years delay, depending on the species and indicator. 
This might be explained considering a cascade effects along cohorts combined with the growth rate of the species, thus 
all requiring a time lag to be evidenced.  
The state of the red mullet population in the central-southern Tyrrhenian sea has been evaluated by previous studies 
carried out within Samed (Anonymous, 2002) and Medits (Tserpes et al., 2002) projects. In both cases 
recommendations of reducing pressure and protect recruitment were formulated, although ‘direct’ indices of abundance 
did not show any trend, but the time series was short. The analyses conducted in this study underpin the identification of 
sign of deterioration in the red mullet population and provide converging evaluation with the comprehensive indicator 
approach based on ‘direct’ estimates performed in WP5 of the Fisboat project. Thus the outcomes of this study supports 
the usefulness of coupling evaluations based on indicators directly estimated on scientific survey data with those model-
based that are aimed at understanding how changes of biological and pressure parameters affect fish population 
dynamics and which are the consequences of different management strategies. 
As regards hake in the Bay of Biscay, in 2004 a recovery plan for the Northern stock followed up a previous emergency 
plan. Based on the most recent estimates of SSB and fishing mortality (WGHMM, 2006) ICES classifies the stock as 
being at full reproductive capacity and being harvested sustainably. SSB appears to have been very close to Bpa over 
the last 3 years, and F has been around Fpa since 2001. As the growth rate and thus the age determination and 
productivity of northern hake stocks are uncertain, absolute estimates of SSB and F have to be considered with caution.  
In the analyses conducted in this study under the hypothesis of a ‘mean’ scenario (Z lower and constant except for three 
years) signs of negative changes were identified following the period of mortality increase. Alternate positive and 
negative changes occurred also as consequence of recruitment fluctuations, becoming these effects more severe when 
coincident with the fishing pressure intensification. Aladym simulation results confirmed the conclusion of the 
“Indicator Approach”, i.e. “Knowing the worrying state of the stock at the beginning of the EVHOE surveys and as no 
improvement occurred in recent years, on contrary some deteriorations of the indices for older age groups, it seems 
necessary to reduce the fishing mortality”. In the case of ‘high’ scenario a continuous decrease, with some fluctuations, 
of the indicator ESSB/USSB was observed and likely the population still survived because the initial hypothesis was 
based on the independence of recruitment from parental stock. Thus, a potential option to warrant a sustainable 
exploitation of the hake population would be to target a value of Z ranging from “Z mean” to “Z low”. 
One may question why the catch levels observed and obtained by simulation are so close. Is it fluke or reality ? Our 
understanding is that the hake recruitment recorded over the eastern continental shelf of the Bay of Biscay during 
autumn groundfish surveys might supply the hake fishery beyond the VIIIab area. This would then imply that part of 
the F assessed by Aladym model is due to hake migration from VIIIab to neighbouring areas. 
The application of the Aladym model on the Aegean hake gives the opportunity to explore further long-term effects of 
the management measures on the population. Recommendations from previous studies regarding the state of the hake 
stock in the Aegean Sea, using a non-equilibrium surplus production model fed with Medits data, have stressed an 
overexploitation condition and the needing of reducing the fishing pressure (Tserpes et al., 2007). The analysis 
conducted in the present study identifies signs of positive changes after the first 7 years (i.e. around 2000) as 
consequence of mesh increase. A (slight) reduction of fishing pressure on Aegean hake population would produce in the 
long-term a positive change, increasing of about ∼50-60% the current levels of the ESSB/USSB sustainability indicator. 
Comparing the above results with those obtained from the indicator approach developed in WP5 for the Aegean hake, 
they seem to be in a quite good agreement, in particular the CUSUM analysis showed positive changes (mainly in the 
abundance) after 1998, which then led to a stable situation until 2003.  
Single species management strategies assume that the productivity of a stock depends on its current size and 
reproductive potential. Thus, managers have to control fishing through actions directed at keeping the stock at an 
adequate level and protect spawners in order to durably obtain good yields. As regards Baltic cod, Aladym model 
simulations to predict the effects of various management scenarios showed the effectiveness of measures based both on 
fishing ban and gradual reduction of fishing pressure, allowing to compare the respective benefits in restoring safe 
levels of SSB for the Baltic cod population in the long-term.  
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1. Introduction 
Many currently used fisheries assessment methods depend heavily on fisheries 
landings- or catch-at-age data1.  The FISBOAT project (Fishery Independent Survey-
Based Operational Assessment Tools) happened partly because of problems with 
fishery-dependent data: 

• Landings data may not be available due to the geographic spread of 
landing points, or due to area closures. 

• Landings data may be distorted by quota restrictions, poor markets, or mis-
reporting. 

• Landings data may be poorly representative of total catch because of 
discarding at sea. 

• Landings data for stocks that have become of interest as others have 
declined may not be broken down into age groups as required for VPA-
based stock assessments. 

Concerns about the adequacy of official landings statistics in Europe have existed for 
a long time (Anonymous 1986).  Additionally, stock assessments use data for 
landings- or catch-per-unit-of-effort (LPUE or CPUE, respectively) recorded for 
commercial fishing vessels.  These data, of course, have all the same problems as 
official landings statistics but, in addition, may provide poor and misleading 
information about abundance because of fishers’ adeptness at finding fishable 
concentrations of fish even when stocks are low (Rose and Kulka 1999).   
 
Fishery-independent abundance indices can be obtained from trawl surveys carried 
out by research vessels, specially chartered fishing vessels, or commercial vessels 
operated in partnership with scientists (Armstrong et al. 2007).  The vessel fishes the 
area occupied by the stock(s) of interest at least annually according to a fixed protocol 
with a standardised trawl, usually equipped with a small-mesh codend having a 
reasonably constant catchability for most size classes.  Fish surveys can also be 
carried out using acoustic methods, and using plankton nets to catch eggs and drifting 
larvae.  Both of these are likely to be supplemented by standardised trawling, to 
identify species during an acoustic survey, or to obtain samples of adults to estimate 
reproductive parameters during a planktonic egg survey. The objectives of FISBOAT 
were to develop tools based on any type of  scientifically conducted survey in order to 
allow fishery-independent assessments, and to evaluate the ability of the developed 
tools to provide quantitative advice on management options. 
 
Fish survey data have their own weaknesses.  For a recent review of many aspects, 
see Anonymous(2004a; 2005a); for standardisation of trawl gear see 
Anonymous(2006); and for problems associated with the noise made by survey 
vessels see Mitson (1995).  Trenkel (FISBOAT report) illustrates special problems 
when using survey data as the unique source of data for carrying out a stock 
assessment, namely mismatch of survey area and stock area, selective catching of size 
and age classes that are not representative of the size or age structure of the stock, and 
variation of survey catchability (Trenkel 2007).   
 
A likely direction for reform of the CFP is away from the management of single-
species stocks and towards management of whole ecosystems, the so-called 
                                                 
1 Catch ≥ landings + discards, the latter being relatively important in many European fisheries. 
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Ecosystem Approach to Fisheries Management (EAF) or Ecosystem-based 
management (EBF) (Ward et al. 2002; Garcia and Cochrane 2005).  The need for an 
EAF is now accepted by many scientists (Rice et al. 2005), non-governmental (Ward 
et al. 2002), and governmental organisations (Commission 2001a; FAO 2003).   Now 
that so many fisheries are over-fished (Commission 2001b), such an approach holds 
promise that exploitation of commercial fisheries can be sustainable and without 
undesirable environmental side effects such as have been seen and cogently 
interpreted for the Black Sea (Daskalov 2007; Daskalov et al. 2007).  An EAF also 
embraces social and economic needs (Commission 2001c).   
 
Survey-based assessment methods appear to have a major role to play in an EAF.  
Surveys can provide time-series for numerous and varied indicators of the health of 
commercial fish stocks, non-target species of fish, as well as other ecological 
components (though the latter were not part of the FISBOAT project).  Discussions 
are currently in progress for reforming the European Commission’s Data Collection 
Regulation (EC 1639/2001) so that data are collected on non-target and ecological 
components of the sea as well as on commercial fisheries.  These changes should 
permit the development of new time-series of indicators from fish surveys as well as 
from fishery-dependent sources.  Surveys can also support single-species stock 
assessments of the type comparable with those currently carried out with fishery-
dependent data.  Survey-based stock assessment methods considered for Deliverable 
3.1 of the FISBOAT project are summarised by Mesnil et al. (2007). 
 
The purpose of the present section of the final report of the project is to assemble the 
results of FISBOAT research in order to indicate how a comprehensive stock 
assessment might be prepared when most of the available information about the stock 
is derived from one or more surveys.  The text is kept general because every 
individual stock and ecosystem is likely to make its own special requirements that 
cannot all be dealt with in one document.  We first comment on how survey-based 
indicators and methods might be applied in parallel with existing stock assessments.  
Information could thereby be added to improve precision and understanding, and such 
a parallel approach might assist a transition from one system of advice and 
management to another.  The bulk of the text is devoted to a scheme for assessing 
stocks using only survey-based results; fishery-dependent data might be added to the 
analytical assessment but that possibility is not treated here because it was not 
considered under FISBOAT (except as part of the development of the FLR simulation 
framework which is general for all types of data).   Finally, experiences from applying 
the FISBOAT methods to 8 case studies representative of a diverse range of European 
marine fisheries are summarised.  These indicate, as might be expected, that the 
informativeness and applicability of the different indicators and methods depends 
heavily on the special circumstances of the fishery and the survey.  The literature on 
ecological assessment of fisheries is extensive and well reviewed already so citations 
are restricted to papers that fill gaps in our research or that can help readers find the 
roots of the various ideas. 
 
The biological and spatial indicators, and the methods for interpreting the results that 
were developed or considered during the FISBOAT project are documented in the 
accompanying FISBOAT report, the ‘Manual of Indicators and Methods for assessing 
fish stocks using only fishery-independent, survey-based information’ (Cotter et al. 
2007).  The biological and spatial indicators are summarised here in tables 1 and 2, 
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respectively, and the methods in table 3, so that the present document can be read 
without necessarily referring to the Manual. The methods of stock assessment 
developed specifically for use with survey data are documented in another 
accompanying FISBOAT report, ‘A review of Fishery-Independent assessment 
models, an initial evaluation based on simulated data’  (Mesnil et al. 2007).  They are 
summarised here in table 4. 
 



 277

2. Using FISBOAT methods alongside existing 
methods of fish stock assessment 
Currently, scientific advice supporting the management of European marine fisheries 
is formulated by ICES fish stock working groups using well known models fitted to 
fisheries-dependent and/or fisheries-independent survey data.  FISBOAT, on the other 
hand, developed software and documentation for carrying out diagnostics of fish stock 
abundance and status as well as advice on management strategies, using only fishery-
independent information from research surveys.  
 
Three categories of methods were developed under FISBOAT: (i) assessment models, 
(ii) monitoring procedures based on indicators of stock attributes, and (iii) simulation 
evaluation tools to investigate appropriate management strategies. The two first 
categories provide relative information concerning the state of a stock. The 
assessment models use survey-based indices of abundance only, while the indicator-
based methods use a wide range of indices of abundance, vital traits, and spatial 
occupation.  These tools can be tasked to assess whether management actions have 
effectively allowed the stock to go in the desired direction within limits having known 
statistical risks of false alarms and non-alarms.  Complementary to the FISBOAT 
diagnostic tools are the FISBOAT simulation tools. Once the fish stock is diagnosed 
to have followed a particular evolution in its abundance and vital traits, the projection 
of the population into the future under a regime of defined harvest control rules can be 
simulated, allowing quantitative testing of the available management options.  The 
simulation tools thus provide the basis for advising on management action. 
 
The FISBOAT methods for carrying out, or supplementing stock assessments using 
only fishery-independent abundance indices (CPUE) from fish surveys are shown in  
table 4.  They all performed satisfactorily with simulated stock data (Mesnil et al. 
2007).  The opportunity exists, therefore, to fit one or more of the FISBOAT models 
to survey-only data as support for current methods of stock assessment.  For example, 
it may be possible to obtain useful results with surveys that were rejected for tuning 
purposes in this way. The options are to use LENSUR for length-structured 
assessments, BREM for modelling biomass, and TSA, SURBA, or YCC for age-
structured assessments.  YCC could also serve for screening data prior to using them 
in the main assessment model, or to estimate gradual changes in the apparent total 
mortality or survey catchability between ages and years.  The FISBOAT model and 
the main assessment model (e.g. XSA) should not use the same survey data.  
Otherwise, a degree of corroboration could be expected just as a result of the common 
information and variability (Cotter et al. 2004).   
 
FISBOAT also documented a range of indicators suitable for assessing the biological 
state of a stock and its geographic distribution, together with various methods for 
interpreting the resulting time-series of results.  Use of these ideas alongside existing 
stock assessment methods is recommended to enhance understanding of the stock, 
especially as many past assessments have prioritised quantitative, rather than 
biological aspects. An assessment is likely to be more robust and biologically safe if it 
is based not just  on abundance indices but also on a larger set of stock attributes 
including biological and spatial indices.  For instance, in a particular year, the 
recruitment index may increase which, considering abundance indices only, could 
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justify increasing TAC. But, if the spatial occupation continues to depart from its 
reference position, and biological indicators imply decline in the health of the stock 
despite the better recruitment, an increased TAC may be seen as excessively risky.  
Parallel use of FISBOAT ideas might also assist a smooth transition between existing 
single-species assessments and a more general, ecosystem-based approach to 
management. 
 
The FISBOAT simulation tools were the ALADYM simulator and the FLR 
simulation evaluation loop. Both were based on simulating an underlying biological 
population model and testing different harvest control rules to investigate the domain 
of sustainability of the harvest. The FLR loop also allows the robustness of the 
harvest rules to be tested when errors and biases are present in the information about 
the stock, or when the rule is not complied with (simulating cheeting).  Testing of 
different types of HCRs, e.g. protecting juveniles, area closures, etc., might also be 
possible though some may require re-formulation of the operating model.  Use of 
these tools alongside existing stock assessment methods could enhance robustness in 
the advice against uncertainties.  
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3. Proposition for comprehensive stock assessments 
using FISBOAT methods 

3.1 Introduction 
The FISBOAT project concerned survey-based methods for assessing stocks.  
However, since its inception, the political impetus for an ecosystem approach to 
managing fisheries seems to have firmed, judging from the large numbers of 
publications appearing on the subject.  The following proposition on how to create 
comprehensive stock assessments therefore assumes that all information is derived 
from surveys and that some sort of ecosystem approach is required.  Readers should 
not infer from this a view that use of fishery-dependent data is necessarily wrong 
(Cotter and Pilling 2007), or that an ecosystem approach, whatever its definition 
ultimately turns out to be, is the only worthy way to manage a fishery.  
 
Another assumption concerns the nature of the body managing the fishery.  Political 
and organisational  options for this task are  discussed fully in the collection of papers 
resulting from the EC EFIMAS project (Motos and Wilson 2006).  There are many 
possibilities ranging from the present ‘command and control’ system, through 
regional councils and co-management, to rights-based management.  It is envisaged 
that the management body referred to in the following text may include members of 
the fishing industry, scientists, other interested professionals such as economists and 
sociologists, politicians, and non-governmental organisations.  This is in conformity 
with recommendations concerning the EAF (Commission 2001b; FAO 2003).  A 
consequence of envisaging a body drawn from such a wide range of skills is that 
scientific results about the fishery should be expressible simply and, preferably, 
visually.  
 

3.2 Tasks 

3.2.1 Agree management objectives 
Managers need objectives. The top tier of objectives for managing a fishery are 
probably best decided by political processes outside the management body so that its 
time is not taken up with arguments among competing interests, e.g. for more fish to 
be harvested, or for more conservation.  FAO (2003) offers suggestions for top level 
objectives: 
• keep harvested species within ecologically viable stock levels by avoiding 

overfishing and maintaining and optimizing long-term yields; 
• maintain habitats and populations of non-retained (by-catch) species with 

ecologically viable levels; 
• keep impact on the structure, processes and functions of the ecosystem at an 

acceptable level; 
• maximize net revenues; and 
• support regional employment  
Another possibility would be to 
• achieve a significant reduction in the rate of biodiversity loss (Jennings 2005) 
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Fishing interests will probably wish to add explicit objectives for financial yields.  
They do not automatically translate into yields of fish since market prices tend to go 
up as quantities landed go down.  Economic arguments of this sort could play an  
important role in ameliorating fishing pressures. 
 
The top level objectives have to be translated into operational objectives for the work 
of the fishery management body.  The operational objectives are likely to have to deal 
with a wide range of fisheries impacts  and, under an EAF, should be directed towards 
achieving sustainability.  Prioritisation of objectives is necessary to prevent an 
impractical proliferation of them (Jennings 2005).  An example of an operational 
objective designed to meet the first political objective in the bulleted list above might 
be ‘To maintain 10% of the stock at age 3 or older”.  Each operational objective 
should be directly addressable by scientific means, for example using one or more 
indicators of the type shown in tables 1 and 2. 

3.2.2 Select biological and spatial indicators 
Guidance on the selection of indicators for managing a fishery is provided by 
Jennings (2005), Rice and Rochet (2005), Rochet and Rice (2005), and other papers in 
the conference proceedings edited by Daan et al. (2005).  Published studies of the 
performance of selected indicators in fished situations are also available (Piet and 
Jennings 2004). Rice and Rochet (2005) argue that the number of indicators chosen 
should be minimal to prevent conflicting signals and arguments.  Most of these 
writers were probably unaware of the spatial indices recently developed under 
FISBOAT, see table 2.  There can often be reasons to expect that the geographic 
distribution of fish stocks will change in response to fishing pressures, or to variations 
in oceanographic conditions or climate.  Spatial indicators therefore provide another 
way of looking at a fish stock.  Usefully, those shown in table 2 are unaffected by 
zero catches which can distort comparisons of geographic distributions over time 
when using spatial indicators that do not allow for zeros.   
 
The biological indicators listed in table 1 relate to most key biological processes 
including growth, condition, maturity, reproduction, abundance, and mortality.  There 
are of course hundreds more indicators to choose from (Methratta and Link 2006).  
The first step in selecting indicators is the identification of fishing impacts most likely 
to compromise attainment of the operational objectives.  These are then prioritised 
according to severity and likelihood of impact, and state indicators relevant to 
impacted components of the ecosystem selected, depending on resources (Jennings 
2005), and seasonal timing of the survey relative to the biological processes.  
Different interest groups in the management body are likely to favour different 
indicators.  Simulation studies using the ALADYM age-length-based model, table 3, 
or the FLR system (Kell et al. 2007), both developed under the FISBOAT project, 
may provide an objective evaluation of which strategy is likely to bear most fruit (De 
Oliveira et al. in press).  Several simulation studies concerned with the performance 
of ecological state indicators have been reported recently (Fulton et al. 2005; Hall et 
al. 2006; Methratta and Link 2006; Travers et al. 2006).   
 
A further consideration when selecting biological indicators for fish stocks and 
ecosystems is whether they can be adequately sampled by the available surveys.  
Species that are poorly caught by the survey gear will occur infrequently in survey 
catches and are likely to display a high variance from station to station.  
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Consequently, the data make a poorly informative indicator series.  There is more 
discussion of compatibility between indicator and survey in section 3.3.4 below. 
 
A high degree of functional independence among indicator series implies that they are 
measuring different processes with minimal overlap and redundancy.  As examples, 
indicators of growth and condition are likely to show a high degree of functional 
dependence because of a mutual dependence on adequate food, while growth and, 
say, age composition are likely to be more nearly independent because the latter 
depends on the additional factor of mortality.  The amount of dependence acceptable 
among indicator series itself depends on the extra work and expense created by each, 
and on whether they inform about relevant, different aspects of a process. 
 
Sampling independence is just as desirable as functional independence but is likely to 
be harder to achieve when, as is usually the case, different indicators are measured 
from the same nets (or other sampling devices) on the same surveys.  To understand 
this, imagine sending out a different survey team and vessel for each indicator, 
supposing that were an affordable option: the indicators would then be sampled 
independently (or more nearly so) and variances among series would be higher 
because results would include the between-teams variance and give a truer picture of 
the reliability of, and the relationships among the different series. 

3.3.3 Select indicators of fishing pressure 
Jennings (2005) points out that ecological state indicators are inadequate by 
themselves for managing a fishery; another important class of indicators measures the 
fishing pressure being applied to an ecosystem.  Less research attention has been 
given to this class of indicator but recent papers  by Piet et al. (2007) and Hiddink et 
al. (2006) provide different perspectives on the pressures of trawling effort.  Ideally, 
the links between fishing pressure indicators and ecological state indicators will be 
well understood so that fishing can be managed in relation to properties of the 
ecosystem (Jennings 2005) but, if the links are not well understood, some sort of 
adaptive management system would be needed as discussed further below.  Pressure 
indicators can be studied with similar statistical methods as state indicators, for 
example, those listed in table 3.   Canonical correlation (Rencher 1995; Everitt 2005) 
is an obvious choice of statistical method to consider when trying to identify the most 
important links between suites of pressure and state indicators but an example of a 
research study was not known to the FISBOAT project team. 
 
For short lived species caught early in their life, density-dependent phenomena may 
condition growth and natural mortality rates and, consequently, any indices based on 
them. These processes can have as much effect as increasing fishing effort, as is 
known to happen for red mullet and several species of bivalve molluscs in the 
Mediterranean, and, almost certainly, elsewhere.  Caddy (2004) states that “Indicators 
of growth rate and mortality should ideally be quantified through time (i.e. under 
different densities) and in space (by fishing ground) to evaluate variations in density-
dependent processes and habitat quality”.  Moreover, considering that in the 
Mediterranean area, mainly due to the small mesh size of the utilized trawl net and the 
high fishing pressure,  age 0 predominates by many times in survey and commercial 
catches, as well as in the stock.  Consequently, changes in recruitment strength may 
have a strong influence on mean size. 
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3.3.4 Select survey type and design 
Many existing fish surveys serve many purposes (Ehrich et al. 2007) but were 
primarily designed to support or ‘tune’ fish stock assessments based on models of the 
numbers of fish landed by commercial fleets.  A different situation exists in 
Mediterranean areas, where monitoring of landings was sparse at least until 2002 
when the EC Data Collection Regulation started to be applied, and fish surveys served 
also as assessment tools (Abella et al., 1999; Anonymous, 2002).  Ecosystem based 
management of fisheries using survey-based models and indicator series might benefit 
from different emphases in the designs of these various surveys.  However, 
immediate, radical changes are unlikely because of the general wish in fisheries 
science communities to retain temporal continuity in survey results.  The easiest 
modification to consider without damaging continuity is the deployment of additional 
fishing or other devices such as a standardised 2-metre beam trawl towed for 5 
minutes at each station fished with the main gear (Callaway et al. 2002a; Callaway et 
al. 2002b).  Benthic grabs (Rees et al. 2006; Rees et al. in press), acoustic equipment 
(Greenstreet et al. 1997; Mackinson et al. 2004; Mackinson and van der Kooij 2006), 
and plankton collectors (Beaugrand 2005) could also be considered, as could 
systematic observations of sea birds and marine mammals from the decks of survey 
vessels. 
 
Given that one or more standard, unmodified surveys provide the only source of 
information for managing a fish stock, the limitations of those surveys for that 
purpose must be carefully considered beforehand.  Trenkel (2007) provides examples 
to illustrate that: 
• The survey should encompass the distribution of the whole stock, particularly 

if it is a mobile species such that the proportion inside the survey area varies 
from year to year, e.g. with abundance. 

• The size and age classes sampled should give unbiased impressions of the 
length and age frequency distributions of the stock.  Problems could arise 
because the distribution of fishing stations within the survey area gives a 
biased impression of geographic variability, or because the size selectivity of 
the gear is not reasonably constant from small to large fish. 

• Survey catchability for the species should be reasonably constant 
geographically and temporally. 

Numerous other technical issues (Anonymous 2004b; 2005b) should also be 
considered before placing heavy reliance on the results of a survey .  As a first guide, 
alarm bells should ring for any species that is not consistently caught where it is 
expected, when migrations – either horizontal or vertical – perhaps combined with 
variations in the timing of the survey are likely to cause substantial variations in 
abundance indices, or when catchability is likely to be related to abundance of the 
stock due to contraction around favoured locations when numbers decline.  Note that 
these reasons imply that the precision of survey-based indicators for a stock may 
decline significantly with its declining abundance.  Another point to consider 
concerns the statistical power of a survey to detect future trends.  Precision must be 
adequate to detect an undesirable trend in indicator values.  A method for this is 
summarised in table 3, method 5.3.2. 
 
In the Mediterranean Sea, fishing fleets, allocated along the narrow continental 
shelves, generally exert  their fishing pressure near the ports and hence, a stock may 
show different levels of abundance and demographic structure over relatively short 
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distances along these narrow stripes. In consequence, the spatial coverage of the 
surveys can include quite heterogeneous situations. Analyses should only be done 
with data proceeding from the tows performed  within the areas exploited at the same 
rate. If this is not done, the analysis of time series becomes problematic, for instance 
for trends in Z.  For instance, consider a region where no fisheries-dependent data are 
available.  Information from a trawl survey may include data from 2 contiguous areas, 
e.g. a northern portion that is exploited at a quite high rate and a southern portion that 
is lightly exploited. The results will consist of an average value with no practical use 
for management purposes. In fact, results and derived advice will tend to penalize the 
fleet that exerts a lower fishing pressure in the Southern portion even though it is 
likely to be able to support heavier fishing pressure in the future. 
   
Certain indicators are very dependent on the seasonal timing of a survey.  Indicators 
of reproductive capacity, e.g. SSN, GSI, LaM50, AaM50 (table 1), are mostly best 
measured just before the breeding season of a species when gonad development is 
most advanced.  Supplementary histological examinations of fish can permit more 
flexibility in the timing but they add considerably to the workload. Similarly, 
indicators of growth and condition, e.g. C, L25 (table 1), are likely to display seasonal 
highs and lows, especially for small, young fish that respond especially rapidly to 
good feeding conditions.  Spatial indicators (table 2) may also vary with season 
depending on migrations, and perhaps with mortality.  If the season of a survey cannot 
be altered, the choice of indicators should be restricted to those that are compatible 
with the time of year. 
 
Those finding themselves with the challenge of designing a survey specifically to 
manage a fishery without relying on other data would need to keep the foregoing 
points in mind but, in addition, should ask what other design features would enhance 
precision of the chosen indicators.  Fixed station designs are vulnerable to contraction 
of the stock to locations in between fishing stations.  This would be a case of bias 
varying with abundance.  The migration-related bias of a fixed station designs may 
itself also vary from year to year depending on hydrographic or seasonal conditions.  
Randomised designs, if they are feasible practically, should be free of bias but may 
show high variance and thus be inefficient, particularly for the less common species.  
Stratified or adaptive designs may be efficient for priority species but can make the 
survey very inefficient for others.  In short, there are no easy answers about design of 
a survey intended to provide information for many indicators. 

3.3.5 Select reference period and reference values/trend directions for 
indicators 
Reference points are values chosen on best available information to help managers to 
decide whether the level of an indicator signifies that a stock or an ecosystem are in a 
good state, or a bad state needing corrective action.  The points may be chosen to 
signal for example, “no impact”, a precautionary “need for corrective action”, or a 
limiting “need for extreme action” such as closure of the fishery.  Deciding these 
values in advance of any problems and possibly without extensive experience of  
monitoring the ecosystem may prove difficult and subjective.  Simulating the fishery 
under known conditions representing low and high fishing pressures combined with 
different levels of observation error could assist; the ALADYM model (table 3, 
methods 5.2.1 and 5.2.2) and the FLR system (Kell et al. 2007) developed under 
FISBOAT are two possible methods for doing this.  Reference points and directions 
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are certainly matters to be negotiated with all interests represented on the fishery 
management body.  Jennings (2005) discusses reference points in more detail, 
pointing out that hitting targets may be better policy than avoiding limits, and that 
reference directions (e.g. towards improvement) may be easier to find and agree than 
absolute values or slopes.   
 
Finding reference points or directions is often greatly assisted by knowledge of a 
period when fish stocks or the ecosystem were in an acceptable condition, probably at 
a time of low fishing effort, or before the fishery matured and yields per unit of effort 
started to decline substantially.  Values or trends of each indicator may then be 
interpreted relative to this so-called ‘reference period’ taking into account elementary 
facts about the biology and behaviour of the species (table 3, method 5.5.1).  In some 
cases, research results already  permit convincing explanations of what is happening 
in the ecosystem, as for some groups of size-based ecosystem indicators (Shin et al. 
2005).  Since such understanding greatly facilitates intelligent, adaptive managerial 
actions that are most likely to be agreeable by different interest groups on the stock 
management body, research directed at improving understanding of the basic 
biological and spatial processes appears to offer much promise for successful stock 
management based on indicators. 

3.3.6. Select statistical methods relating to individual indicators 
Indicator series derived from fish surveys are likely to be affected by considerable 
sampling and measurement variance so a statistical approach to assessing compliance 
with pre-set reference points or reference directions is more or less essential.  Several 
methods have been documented to assist comparisons:  
• Recent trends are likely to be of most interest; they can be assessed from 

second derivatives of the smoothed series (table 3, method 5.3.1). 
• Among industrial quality assurance schemes, the Cusum method offers a 

sensitive method for checking whether fishery and environmental quality 
indicators are behaving as expected (table 3, method 5.3.3).  A reference 
period is essential. 

• Nonparametric statistical methods can be used to assess prevailing levels and 
overall trends without using models and with the minimum of assumptions, 
making them relatively objective and easy to explain (table 3, method 5.3.4).  

3.3.7 Select statistical means of combining indicator results 
Management of a fishery will probably need many indicators.  Two problems result.  
One is how to understand collectively the many, possibly different signals about the 
stock and the ecosystem; the other is to recognise that results of some indicators are 
linked with results for others, either through a functional dependence, or through a 
sampling dependence arising because the material upon which indicator values were 
measured was obtained on the same surveys or with the same hauls. 
 
One approach to both these problems is to form new composite indices from groups 
of individual indices.  Principal components analysis (PCA) weights the different 
indices so that the weighted averages can be used as composites that are statistically 
independent.  The first two or three principal components – orthogonal axes through 
the data cloud – usually explain most of the variability and can be very helpful for 
understanding the signal from groups of correlated indicators.  See table 3, method 
5.4.1 in which indicators are composited into a multivariate distance from a central 
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reference point so allowing a new perspective on evolution of the stock.  Multi-
factorial analysis allows PCA applied to each of several fishing stations to be 
combined.  This can be useful for following changes in the prevailing spatial location 
of a species as individuals get older.  See table 3, method 5.4.2.  Min/Max 
autocorrelation factors (MAFs) are used to combine a set of indices thought to be 
representative of a fish stock into components (factors) that present maximal 
continuity in time. The trends extracted do not allow  reference periods to be defined 
because of their continuity.  On the other hand, the continuity allows the status of the 
stock to be monitored in time (Woillez et al 2007). 
 
Another approach to the problems of multiple indicators is simpler and amounts to a 
preparation of a systematic diagnosis about the stock from the different individual 
signals.  The cause-effects table has already been mentioned.  It attempts to stimulate 
biological interpretations of joint results.  See table 3, method 5.5.1.  A simple visual 
tabulation of results for groups of variables using red, orange, and green colouring to 
indicate perceived harm, insignificance, or benefit, respectively, to the stock and 
ecosystem is called a ‘traffic light table’.  It can reveal at a glance whether a stock is 
in difficulty or not.  An application to Cusum results is summarised in table 3, method 
5.5.2.  A third diagnostic method again uses PCA but, in this approach, to summarise 
independent groups of indicators so as to assist understanding of the signals 
underlying them.  See table 3, method 5.5.3. 

3.3.8 Select survey-based assessment method 
In addition to providing indicator series for managing a fishery, surveys can also 
support variants of various stock assessment models.  This has already been 
commented upon in connection with provision of survey-based assessments in parallel 
with assessments based on landings statistics.  The survey-based methods estimate 
CPUE (rather than absolute stock numbers), total mortality Z, and annual recruitments 
in a relative sense. These standard outputs are likely to be valued by fisheries 
biologists and others used to interpreting fish stock models and wishing to use them as  
complementary to indicator-based methods. They might also serve as indicators in 
their own right.  The options are to use LENSUR for length-structured assessments, 
BREM for modelling biomass, and TSA, SURBA, or YCC for age-structured 
assessments.  Vigilance should be maintained to prevent the same survey results for 
CPUE and Z being used twice, once to support a survey-based assessment, and once 
again to provide indicator series.  This practice would lead to spurious relationships 
between signals coming from the two methods, and to double inclusion of any 
sampling and measurement errors (Cotter et al. 2004). 

3.3.9 Agree management responses to good and bad assessment 
results. 
Few fish surveys provide absolute estimates of numbers or weight of fish in a stock;  
they only provide relative estimates from year to year or place to place. This is 
because the catchability coefficient relating CPUE and population abundance locally 
is seldom known even approximately for trawl surveys2.   The disadvantage of 
relative estimates of quantity is that they cannot be used directly to recommend total 
                                                 
2  Exceptionally,  some acoustic surveys are considered to give absolute estimates Gjøsaeter, H., 
Bogstad, B. and Tjelmeland, S. (2002)  Assessment methodology for Barents Sea capelin, Mallotus 
villosus (Müller).  ICES Journal of Marine Science 59, 1086-1095.. 
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allowable catches (TACs) that correspond to proposed absolute levels of fishing 
mortality, F, as carried out annually to manage many stocks under the present 
European Common Fisheries Policy (CFP).  Note, however, that the situation is 
different in the Mediterranean where fisheries are regulated mainly by control of 
effort and technical measures. 
 
TACs based on F became important for managing many international fisheries partly 
because they are easy to divide up by political agreement among nations, and partly 
because F is a readily estimated parameter in VPA and other stock assessment 
methods based on fishery-dependent data (Pope 1979).  However, whether or not such 
TACs actually achieve control of the absolute numbers of fish in a stock, even if 
accurately implemented according to the recommendations of scientists, is now 
debatable.  Only the total mortality, Z, is directly estimable - from the decline in 
numbers in each year class over time.  F must be estimated indirectly by subtracting 
natural mortality, M, from Z, and, since M is one of the hardest fishery parameters to 
estimate (Vetter 1988; Hewitt and Hoenig 2005), significant bias in estimates of F, 
stock numbers, and thus TACs would not be surprising (Rivard 1989), even if bias in 
the market sampling data and stock assessment models (Cotter et al. 2004) is 
somehow successfully avoided.  Furthermore, TACs can fail to maintain a stock even 
if implemented perfectly (Kell et al. 2005).  The TAC-F system is now widely 
acknowledged to have a variety of disadvantages (Beverton 1998; Demaré 2006) and 
reform of the European Common Fisheries Policy (CFP) is being actively discussed 
(Commission 2001b).  It follows therefore that superiority of the supposedly absolute 
TAC management system over relative, survey-based methods should not be 
presumed.   
 
Given acknowledgement that management of the absolute size of stocks is not 
feasible, some sort of organised trial and error procedure, generally known as adaptive 
management (Walters 1986) becomes necessary.  Jennings (2005) proposed that 
management should focus on fishing activities that are most likely to cause 
unsustainable impacts in the ecosystem; the relationships of current values of priority 
indicators to reference levels or trajectories provides guidance on the actions to take.  
Survey-based assessments may also contribute.  Having decided whether there is a 
problem or not, the management body then has to decide how to adjust controls on 
fishing effort or harvesting.  ‘Harvest control rules’ (HCR) is the name applied to the 
limits set on fishing by judgement and agreement among fishers and managers and 
without presuming a link with absolute stock size.  A variety of HCRs exists with 
various properties and rules for adjustment (see Bogaards report in FISBOAT).  These 
can be tested using simulation under the FLR system (Kell et al. 2007) or the 
ALADYM simulation model, both developed under FISBOAT, and are likely to form 
an important part of the management strategy adopted.  Technical measures, e.g. mesh 
regulations, closed areas, by-catch rules, etc., are likely to form another important 
part.  They may be particularly suited for controlling specific damage on the 
ecosystem, e.g. to reefs, or nursery areas, as well as being used to control harvesting 
of the target species.  All controls would have to be reviewed and re-negotiated on a 
regular basis but not necessarily every year if monitoring results cannot provide clear 
trends, as distinct from possible noise, within that period.  Increasing the frequency of 
surveys from annual to multi-annual, possibly with reduced numbers of stations being 
fished on each occasion to minimise extra costs, could be a useful strategy for picking 
up and acting upon signals available from priority indicators earlier. 
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4. Experiences with case studies 
FISBOAT case studies covered the 8 diverse European stocks and surveys whose 
details are presented in table 5.  They were selected to represent a varied range of 
European fish stocks that have been assessed by ICES for many years. The national 
survey data are collected under the international coordination of ICES and/or the 
European Commission (EC regulation No 1639/2001).  Most of the indicators and 
methods listed in tables 1 to 4 were applied in each case, when practicable.  The 
results are reported fully in Final Report Document ‘Case Studies’.  Here we 
summarise selected experiences from practical application of the indicators and 
methods to these case studies. 

4.1 Barents Sea cod 
Survey Zs compared well with ICES survey-independent estimates of fishing 
mortality.  Cusums appeared to provide more signals than trend analyses but this may 
be an artifact of the high variability of recruitment, growth and productivity shown by 
this stock over the time-series.  The effectiveness of spatial indicators was reduced by 
variability in the area of survey coverage from year to year.  The “traffic light” 
summary of Cusum results seemed promising.  MFA indicated a strong, age-
dependent spatial structure for the stock. 

4.2 North Sea cod 
The derivatives method indicated reducing total mortality in recent years while 
LaM50 showed a consistent decline over the period.  The Cusum method provided an 
alert for abnormally decreasing abundance from 1997.  Trends over time were found 
for spatial location indices and some other spatial indices using various nonparametric 
methods but an obvious interpretation was not available.  Comparable results were 
obtained with multivariate methods.  Constructed multivariate indicators were found 
useful for identifying the most influential factors in groups of correlated indicators. 

4.3 North Sea herring 
Awaiting report. 

4.4 Western (Biscay) hake 
The power method showed that the power to detect trends was low due to high inter-
annual variability and missing values for biological and spatial indicators.  The 
derivatives method detected significant trends for all the length indices and Z during 
the recent 5 years.  The Cusum method found various spatial changes for different age 
groups, and an increase in Z.  Composite multivariate indices did not provide results 
with obvious interpretations.  Small discrepancies between the survey and ICES 
assessments were observed in the timing and range of variation of recruitment. 

4.5 Biscay anchovy 
The daily egg production survey confirmed the importance of recruitment indicators. 
The Cusum and derivatives method successfully revealed changes in abundance 
related indicators.   Overall abundance was related to the area occupied by the stock 
and inversely related to anisotropy.  Composite multivariate indices were found to be 
difficult to interpret.  Analysis of the acoustic survey also found that spatial 
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distribution and abundance indicators were well correlated, that abundance is heavily 
dependent on successful recruitment.  These relationships corroborate alerts about the 
stock triggered by ICES. 

4.6 Central Mediterranean red mullet 
Trends were observed in Z, length-based indicators and spatial indicators but these 
were not highly statistically significant, possibly because of the shortness of the time-
series.  The Cusum method triggered an alert when the survey abundance index 
reached its lowest level in 1997.  Composite multivariate indicators were found useful 
for interpreting results from correlated indicator series.  In general, the findings were 
difficult to interpret, although  combination of the approaches based on the Cusum 
method and trend analysis indicates that the  population dynamics of red mullet are 
affected by impacts that influence demography and production probably with cyclical 
phases, although the most recent condition displays signs of an increased exploitation 
pattern. 
 

4.7 Baltic cod 
The Cusum method successfully signalled a significant reduction of age 5 Baltic cod 
in 2000, and a reduction in the spatial indicator, positive area in 2002.  Biological 
indices were less successful at signalling changes, except for L75 which signalled a 
decrease in numbers of large fish in the last year of observation.  Trend analysis in the 
cause-effects table suggested that fishing mortality was having the most effect on the 
stock.  The age structure of the stock was predominantly young, implying a strong 
dependence on recruitment.  LaM50 was found to be unreliable because the seasonal 
timing of the survey was not optimal for estimating maturity.  However, MFA and 
spatial indices revealed different spatial distributions for young and old individuals, 
probably related to their stage of maturity.  These analyses supported existing ICES 
assessments that Baltic cod are too heavily fished. 

4.8 Eastern Mediterranean hake 

Aegean Sea 
No significant trends were observed for any of the biological parameters considered 
using the linear and derivatives methods. However, there was an indication from the 
CUSUM analysisof a general increase of abundance towards 2003 compared to before 
1998 when it was poor. Although there was no signal for increasing abundance of 
recruits, there were negative signals in the abundance of immature fish from 1994 to 
1997 and in the abundance of mature fish in 1995 and 1996, which consequently did 
not give any signal (CUSUM). Furthermore, the different lengths did not give any 
signals after 1997 (CUSUM). These results show a stable situation at least after 1997 
for the biological indices, however, trends may be observed if more recent years are 
considered. Concerning the spatial indices increasing trends in the positive area of the 
younger age groups (A0, A1, A2) were observed for the whole period, whereas some 
recent trends were found in the distribution characteristics of different ages (mostly 
A4).   
 
Assessments for hake in the Aegean Sea are not available.  Given the facts that hake 
were considered overexploited at the beginning of the studied period, that after 1994 
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the fishing effort was reduced gradually until 2005, and that a larger cod-end mesh 
size was imposed recently, it is suggested that enforcement of the existing measures 
be continued because they may have assisted the observed increased abundance. The 
protection of recruits by expansion of closed seasons in the main nursery grounds is 
also recommended. 

Ionian Sea 
There was an increasing trend in abundance during the studied period (linear). This 
result in combination with the decreasing trend of L25 and Lbar obtained for the 
recent years (derivatives method) could be showing an increasing trend in 
recruitment. However, this scenario was not confirmed by the trend of the recruitment 
index (not significant), although there was an indication of increased recruitment in 
the last year (CUSUM). The simultaneous decreasing trend of L75 (derivatives) could 
show a slower growth rate. However, this scenario was not supported by the 
increasing trend of abundance and the decreasing trend of L25. Furthermore, the 
CUSUM analysis did not give any alarm for the different lengths. Additionally, the 
CUSUM analysis did not give any signal for the abundance of the different ages with 
the exception of recruits and the mdbio showed to be driven only by the positive 
alarms of the recruitment index (1995, 2003).  The results are not clear and perhaps 
this is due to the short data series (1994-2003). The consideration of more recent 
years in the analysis is suggested in order to obtain a clearer image.  
 
Assessments for hake in the Ionian Sea are not available.  Given the facts that hake 
was considered overexploited in the beginning of the studied period, that after 1994 
fishing effort was reduced gradually until 2005, and that a larger cod-end mesh size 
was imposed recently, it is suggested to continue the enforcement of the existing 
measures, which may have resulted in an amelioration of recruitment. The 
consideration of more recent years in the analysis is suggested before imposing new 
measures. 
 

4.9 Comments 
The results of using the FISBOAT indicators and methods clearly varied with the 
stock and the survey.  The pattern of variability and its time scale along the indicator 
series strongly influenced the detection of change in the time series.  Short series and 
missing values created additional problems.  There were also difficulties in choosing 
reference periods as baselines for detecting change when stocks were heavily 
impacted by fishing throughout the survey series.  For the same reason, some stocks 
showed no major changes in biological or spatial variables and, in those 
circumstances, it is not unreasonable that FISBOAT methods failed to detect changes.   
 
It is important that indicators and methods be chosen to reveal the prevailing state of a 
stock, as well as changes to it.  Abundance, weight, spawning stock biomass, and age 
structural indices often serve this purpose satisfactorily, as they already do in the 
current assessment system.  Total mortality, on the other hand, tended to be constant, 
or else was too noisy to give a clear signal about the stock.  Although length-based 
indices had much to offer conceptually, their signal and coherence with other indices 
was difficult to interpret in several cases. 
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Low stock levels imply that fine tuning of managerial measures to control fishing is 
not required.  Instead, it is necessary, at least initially, to aim to achieve improving 
trajectories for all important indicators.  Negotiations on the desirable level of long-
term fishing effort can begin when the security of the stock is clearer. 
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Table 1.  FISBOAT project: Biological indicators 
Indicator Symbol Description and properties Section in 

Manual 
Intrinsic population 
growth rate 
 

r Slope of log total abundance (all ages) over time.  Decreases with fishing particularly if 
recruitment is also affected.  Other factors could also cause a decline.  Estimated from time-
series of abundance indices. 

3.2 

Total mortality Z Coefficient of total mortality averaged over a given age range.  Increases with fishing, or 
net migration out of the survey area.  Estimated from log year class numbers from year to 
year. 

3.3 

Numbers-at-length, 
numbers-at-age 

NaL, NaA Length- or age-frequency distributions.  Lack of large or old fish may indicate over-fishing,  
low productivity economically, and vulnerability to high fishing pressures. 

3.4 

Spawning stock in 
number 

SSN Number of mature fish per tow.  Low SSN implies a stock vulnerable to interference with 
reproductive processes, and high fishing pressures.  Requires accurate maturity staging and 
surveys in the season leading up to spawning.  SSN is reduced by fishing.   

3.5 

Length statistics Lbar, L25, 
L50, L75 

Mean or percentiles of fish lengths found in survey catches.  They indicate growth, 
recruitment, and numbers of older, spawning fish.  The different percentiles respond 
differently to fishing, recruitment pulses, and loss of spawning stock.  

3.6 

Catch weight W Total weight, or weight per unit effort of one (or more) species.  Relates to stock biomass 
and size composition and is affected by seasonal growth and reproduction. Less influenced 
by varying recruitment annually than length indices. 

3.7 

Condition C Average body weight for a given body size.  Reflects nutritional status and reproductive 
fitness.   Estimated by regression from length frequencies but surveys must take place in the 
appropriate season.  Condition varies with gender. 

3.8 

Gonadosomatic index GSI The ratio of gonad weight to body weight.  Affected by nutritional status, maturity stage, 
and reproductive fitness.  An advantage over SSN is that maturity stages are not used. 

3.9 

Length and age at 
maturity 

LaM50, 
AaM50 

Length or age at which 50% of the individuals in a fish stock have reached reproductive 
maturity.  Can decrease slowly with fishing but can also vary widely with latitude.  
Consistent maturity staging is required. 

3.10 
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Table 2.  FISBOAT project: Spatial indicators 
 
Indicator Symbol Description and properties Section in 

Manual 
Centre of gravity CG Mean location of the individuals of a population.  A shift may reflect effects of fishing.  CG is 

sensitive to high densities of fish. 
4.2 

Inertia I Variance of the location of the individuals of a population.  Indicates dispersal but is sensitive to 
high densities of fish. 
 

4.3 

Anisotropy, 
Isotropy 

An, Is Anisotropy measures the elongation of the spatial distribution of the population.  Isotropy is the 
inverse.  Can be affected by the appearance or disappearance of patches of fish. 
 

4.4 

Global index of 
collocation 

GIC Measures the geographic distinctness or overlap of two populations of fish. 4.5 

Number of spatial 
patches 

NoP Measures the geographic patchiness of fish populations.  NoP depends on the threshold distance 
separating two patches and is sensitive to the locations of high densities of fish. 

4.6 

Positive area PA Measures the area where fish of a species occur.  PA is greatly increased when fish occur at low 
densities over a large area. 

4.7 

Spreading area SA Measure of the area occupied by the stock, based on how the abundance is spreading in space.  SA 
equals PA when the population is evenly spread with a constant density. 

4.8 

Equivalent area EA Represents the area that would be covered by the population if all individuals occupied the same 
area.  Independent of the absolute abundance and sensitive to the highest density values.  

4.9 

Microstructure 
index 

MI Measures the relative importance of structural components having a scale smaller than the sample 
lag.  0 corresponds to a very regular, well-structured density surface, and 1 corresponds to a highly 
irregular, poorly structured, density surface, or to measurement noise. 

4.10 
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Table 3.  FISBOAT project: Methods for integrating and interpreting indicator series 
 
Task/Category Method Description and properties Section in 

Manual 
ALADYM An age-length based simulation model for predicting the effects of 

different fishing pressures on a single population of fish. 
5.2.1 Simulating 

population  
dynamics Estimating indicators and 

reference points 
A Monte Carlo approach using ALADYM 5.2.2 

Derivatives method for 
determining recent trends 

A method to estimate the direction of recent changes – up or down – using 
the first and second derivatives of the smoothed time-series. 

5.3.1 

Assessing the power to detect 
future trends 

A model-based method for estimating the power to detect future, linear 
trends. 

5.3.2 

Statistical process control (SPC) 
schemes 

Application of industrial quality control schemes, e.g. Cusum, to monitor 
fishery and environmental qualities derived from time series of indicators. 

5.3.3 

Indicator time-
series methods 

Nonparametric statistical methods 
for assessing trends 

Statistical method for assessing trends in fishery and environmental 
indicators without models and with a minimum of assumptions. 

5.3.4 

Principal components analysis 
(PCA) and biological indicators 
 

Method to represent the evolution of a stock, characterised by many 
biological indicators, as a multivariate distance from a reference centre of 
gravity. 

5.4.1 

Multi-factorial analysis (MFA) 
and spatial indicators 
 

MFA extends the PCA method to cases where the same variables (spatial 
indicators) are measured for the same individuals (e.g. stations) at different 
times.  Can be applied to summerise the spatial organisation of a species 
life cycle through different age classes. 

5.4.2 

Construction of 
multivariate 
indicators 

Min/Max autocorrelation factors 
(MAFs) and time continuity 
 

MAFs are linear combinations of indicator series whose autocorrelation 
decreases from the first to last (much as PC factors explain decreasing 
proportions of the variance).  The first MAF extracts the variation which is 
most continuous in time and can be used with spatial indices to follow 
distribution of a fish population over time. 

5.4.3 
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Table 3 continuation.  FISBOAT project: Methods for integrating and interpreting indicator series 
 

Combining trend signals using a 
cause-effects table 
 

A simple, visual system for interpreting different types of biological and 
fishery information provided by indicator time series, and by other sources 
if available. 

 

5.5.1

A ‘traffic light’ procedure based 
on Cusum out-of-control tables 
 

Illustration of the construction of a simple, visual traffic light table from 
the results of Cusum procedures applied to various indicator series. 
 

5.5.2

Diagnosing 
stock status 
from indicator 
series 
 

A multi-variate statistical 
procedure 

Demonstration of how PCA can be informatively applied to the results of 
Cusum procedures applied to the various indicator series. 
 

5.5.3
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Table 4.  FISBOAT project: Fishery-independent assessment models 
 
Method Abbrev-

iation 
Description and properties Section in 

Assessment  
methods 
manual 

Biomass random 
effects model  

BREM Relative biomass is modelled as a function of last year’s biomass, a net growth coefficient 
incorporating growth and mortality, and annual recruitments.  The growth coefficient and 
recruitments are treated as random walks on the log scale. 
 

1.1 

Length 
structured model 

LENSUR Generates an artificial population in numbers by length class and time step, as specified by a set of 
parameters. Model observations are derived from the operating model in an observation model, and 
parameters are estimated by minimising the deviation of the model observations from real 
observations. 

1.2 

Survey-based, 
age structured 
model 

SURBA Abundance at each age and year of a cohort is given by the recruiting abundance of the relevant cohort 
modified by the cumulative effect of (separable) mortality during its lifetime. Parameters are estimated 
by minimising the weighted sum-of-squares of observed and estimated abundance indices. All 
abundance estimates are relative. 

1.3 

Time-series 
analysis 

TSA A state-space, random walk framework for modelling abundance-at-age indices from a single 
survey.  Fitting of parameters by Kalman filter. 
 
 

1.4 

Year-class curve 
regression 

YCC Estimates annual recruitments and total mortality, Z, by regressing log abundance indices on 
age by year class.  Also estimates relative catchabilities and residual variances for different 
surveys. 
 

1.5 
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Table 5.  FISBOAT project: Details of case studies.  
 

Stock Behaviour Life 
span 

Survey 
Type 

Survey 
timing 

Reference 
period 

Age range, 
years 

Data on 
Length 

Data on 
Maturity 

Manageme
nt 
problem 

Barents Sea 
Cod 

Demersal Long Botttom trawl & 
acoustics 

1989-2004, 
qtr. 1 

1996-2004  
1-10+ 

 
+ 

 
+ 

 

North Sea 
Cod 

Demersal Long Bottom trawl 1985-2005, 
qtr 1 

1999-2003  
1-6+ 

 
+ 

 
+ 

 
+ 

North Sea 
Herring 

Pelagic Long Acoustics 
 

Long   
+ 

 
+ 

 
+ 

 

Western 
Hake 

Demersal Long Bottom trawl 1987-2004 
not 91,93,96

1987-1997 0-5+  
+ 

 
+ 

 
+ 

Biscay 
Anchovy 

Pelagic Short Acoustics & eggs 
(DEPM) 

 1989-2005 1990-2001 ?  
+ 

 
+ 

 

Central 
Mediterranean 
Red mullet 

Demersal Short Bottom trawl 1994-2003 1999-2003  
1-5 

 
+ 

 
+ 

 

Baltic Sea 
Cod  

Demersal Long Bottom trawl 1994-2004, 
qtr. 1 

1994-1999 
excl. 1997 

 
1-5 

 
+ 

 
+ 

 
+ 

Eastern  
Mediterranean
Hake 

Demersal Long 
 

Bottom trawl Medium   
- 

 
+ 

 
+ 
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